On Phillips Operator

C. P. MAY*
Department of Mathematics, University of Toronto, Toronto,' Ontario M5S 1A1, Canada
Communicated by R. Bojanic

Received January 6, 1976

1. Introduction

The Phillips operator is defined by

$$
\begin{equation*}
S_{\lambda}(f, t)=\int_{0}^{\infty} e^{-\lambda(t-1)}\left(\sum_{n=1}^{\infty} \frac{\left(\lambda^{2} t\right)^{n} u^{n-1}}{n!(n-1)!}\right) f(u) d u+e^{-\lambda t} f(0) . \tag{1.1}
\end{equation*}
$$

As far as the degree of approximation is concerned, the behavior of this operator is very similar to that of Bernstein polynomials, Szasz operators, and Post-Widder operators, or, following [7], the so-called exponential-type operators. However, the Phillips operator does not satisfy the differential equation

$$
\begin{equation*}
(c / \partial t) W(\lambda, t, u)=(\lambda / p(t)) W(\lambda, t, u)(u-t) \tag{1.2}
\end{equation*}
$$

where $W(\lambda, t, u)$ is the kernel of S_{λ} (that is

$$
\begin{equation*}
W(\lambda, t, u)=e^{-\lambda(t-u)}\left(\sum_{n=1}^{n} \frac{\left(\lambda^{2} t\right)^{n} u^{n-1}}{n!(n-1)!}-\delta(u)\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.S_{\lambda}(f, t)=\int_{0}^{x} W(\lambda, t, u) f(u) d u\right) \tag{1.4}
\end{equation*}
$$

Since relation (1.2) is one of the basic properties of the exponential operators, there are some technical difficulties in the analogous estimations for the Phillips operators. In this note, we try to suggest some methods for handling such problems by discussing the properties of the Phillips operators. This is our main purpose.

In the study of the approximation properties of the Phillips operators, a few results for some special cases are known. In the case when f is replaced by

[^0]$T(\cdot) f$ in (1.1), where $\{T(t), t=0\}$ is a C_{10}-semigroup of operators. Phillips [8] proved that $S_{\lambda}(T(\cdot) f, t)$ converges to $T(t) f$ uniformly on $[0, L]$ for any $0 \ldots L \therefore x$ Recently, Ditzian [3] estimated this rate of convergence in terms of $\omega_{L}\left(\lambda^{(11 / 2)}, T(\cdot) f\right)$, the modulus of continuity of $T(\cdot) f$ on $[0, L]$. Later. Ditzian and May [4] characterized the saturation class for this operator, again when f is of the form $T(\cdot) f$. In the present note, we determine the classes of functions satisfying $\left.: S_{\lambda}(f: k, t)-f(t) \|_{c:[n, t \mid} O(\lambda, 1), 2\right)$. for all $0 \ldots, 2$, where $S_{d}(f, k, t)$ is a combination of the Phillips operators $S_{A}(f, t)$, and f is a function in $C[0, \infty)$. In particular when $k \quad 0$. we obtain both saturation and inverse theorems for Phillips operators. The analogous results for semigroups of operators can be deduced from it easily.

The saturation theorem (i.e.. > 2) proved in Section 2 is essentially part of the author's Ph.D. thesis which was written under the supervision of Professors Z. Ditzian and S. Riemenschneider. ${ }^{\text {. In Section 3. a direct theorem }}$ is proved for the purpose of the completeness of the theory. In Section 4, we prove an inverse theorem. which the author was not able to prove in his thesis. For simplicity, we only prove the case when $k \quad 0$ for the inverse theorem. but there is no essential difficulties for the generalization.

2. The Saturation Resuli

We tirst prove some preliminary results.
Let $H(\lambda, t, w)$, defined by (1.3), be the kernel of the Phillips operator. The following lemma, describing the "varying property" of the kernel. is the basic property of this operator.

Lemma 2.1. If

$$
\begin{equation*}
\mathbb{P} \quad t\left(1 \quad \frac{D}{\lambda}\right)^{2} \cdots \quad t\left(1 \quad \sum_{\lambda}^{2} D: \frac{1}{\lambda^{2}} D^{2}\right) . \tag{2.1}
\end{equation*}
$$

where D dict, then

$$
\begin{equation*}
\mathbb{P} W(\lambda, t, u) \quad W(\lambda, t, u) u \tag{2.2}
\end{equation*}
$$

Proof. Beginning with the expression

$$
e^{\lambda t} S_{n}(f, t)=\int_{0}^{n} e^{\lambda u}\left[\left.\sum_{n=1}^{\infty} \frac{\left(\lambda^{2} t\right)^{n} u^{n} 1}{n!(n) 1)!} \cdots \delta(u) \right\rvert\, f(u) d u\right.
$$

[^1]we differentiate twice with respect to t on both sides to obtain
$$
e^{\lambda t}(\lambda+D)^{2} S_{\lambda}(f, t)=-\left(\lambda^{2} / t\right) \int_{0}^{x} e^{\lambda t} W(\lambda, t, u) u f(u) d u .
$$

Dividing both sides by $\left(\lambda^{2} / t\right) e^{\lambda t}$ yields the required relation.
Remark. In order to calculate $S_{2}\left(x^{i}, t\right)$, it would be simpler to compute $\left[^{1 / 1}\right.$ than to calculate directly from the operator. For example, $P^{01} 1.1$, $\left.\mathbb{P}^{1} 1 \approx t, \quad \mathbb{P}^{2} 1=t^{2}+(2 / \lambda) t, \quad P^{10}\right\rfloor \ldots t^{10}+90\left(t^{9} / \lambda\right)+3240\left(t^{8} \lambda^{2}\right)=60480$ $\left(t^{7} / \lambda^{3}\right) \div 635040\left(t^{6} / \lambda^{4}\right)+3810240\left(t^{3} / \lambda^{5}\right) \div 12700800\left(t^{4} / \lambda^{6}\right)+21772800$ $\left(t^{3} / \lambda^{7}\right) \therefore 16329600\left(t^{2} / \lambda^{8}\right)+3628800\left(t / \lambda^{9}\right)$.

Lemma 2.2. Let $A_{t+1}(\lambda, t)$ be defined $b y$

$$
\begin{equation*}
A_{m}(\lambda, t)=\lambda^{m} \int_{0}^{s} W(\lambda, t, u)(u-t)^{m} d u, \quad m=0,1,2, \ldots \tag{2.3}
\end{equation*}
$$

Then the following statements are true.
(1) $A_{m}(\lambda, t)$ is a polynomial in (λt);
(2) the degrees of $A_{m \prime}(\lambda, t)$ in (λt) is $[m / 2]$, while the degree of $S_{\lambda}\left(x^{\prime \prime \prime}, t\right)$ in t is exactly m.

Proof. First observe that, if $f, g \in C^{\infty}$, then

$$
\begin{equation*}
\mathbb{P}(f \cdot g)=(\mathbb{P} f) \cdot g: \frac{2}{\lambda} t f \cdot(D \cdot g) \cdots \frac{t}{\lambda^{2}} f \cdot\left(D^{2} g\right)+\frac{t}{\lambda^{2}} D[f \cdot D g] . \tag{2.4}
\end{equation*}
$$

This can be seen from the relation

$$
\begin{aligned}
\mathbb{P}(f \cdot g) & \left.t\left(1-\frac{2}{\lambda} D+\frac{D^{2}}{\lambda^{2}}\right) f \cdot g=t\right) f g+\frac{2}{\lambda}(D f) g+\frac{1}{\lambda^{2}}\left(D^{2} f\right) g \\
& \therefore \frac{2}{\lambda} f D g \cdot \frac{1}{\lambda^{2}} f D^{2} g \cdots \frac{2}{\lambda^{2}}(D f)(D g)^{\prime} .
\end{aligned}
$$

Replacing $(D f)(D g)$ by $D(f D g)-f\left(D^{2} g\right)$, we obtain relation (2.4).
Now the lemma can be proved easily by induction.
The lemma is trivial for $m \cdots 0,1$, and 2 . Assume that the lemma is true for integers less than or equal to m. Applying the operator $((2 t i \lambda) D+$ $\left.\left(t / \lambda^{2}\right) D^{2}\right) \cdots \mathbb{P}-t$ to both sides of (2.3), we have

$$
\begin{aligned}
& \frac{2 t}{\lambda} D A_{m}(\lambda, t)+\frac{t}{\lambda^{2}} D^{2} A_{m}(\lambda, t) \\
& \quad==p^{m} \int_{0}^{\infty} W(\lambda, t, u)(u-t)^{m} d u-t \lambda^{m} \int_{0}^{\infty} W(\lambda, t, u)(u-t)^{u \prime} d u
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{\prime \prime \prime} \int_{0}^{\infty}[\mathbb{P} W(\lambda, t, u)](u-t)^{u \prime \prime} d u-t \lambda^{w \prime} \int_{0}^{\omega} W(\lambda, t . u)(u-t)^{u \prime \prime} d t_{1}^{\prime} \\
& 2 t \lambda^{\prime \prime \prime} 1 \int_{0}^{x} W(\lambda, t, u) D(u-t)^{\prime \prime \prime} d u \\
& t \lambda^{\prime \prime \prime} \cdot \int_{0}^{\infty} W(\lambda, t, u) D^{2}(u-t)^{\prime \prime \prime} d u \\
& 2 t \lambda^{u \prime \cdots-2} \int_{0}^{3} W(\lambda, t, u) D(u-t)^{m} d u \\
& { }_{\lambda}^{1} A_{m: 1}(\lambda, t)-2 t m A_{m-1}(\lambda, t)-t m(m-1) A_{m-2}(\lambda, t) \\
& \frac{2 t m}{\lambda} D A_{m-1}(\lambda . t) .
\end{aligned}
$$

Thus. the lemma is also true for $m \div 1$.
Corollary. Let $W(\lambda, t$, u), defined in (1.3), be the kernel of the Phillips operators. Let also N and δ be two positive numbers, and $[a, b]$ be any bounded interval. Then for any $m>0$, there exists a constant $M_{y \prime}$, such that

$$
\begin{equation*}
\int_{u-1, n} W(\lambda, t, u) e^{N u} d u{ }_{c\{u, b\}} \quad M_{n u} \lambda^{-w} \tag{2.5}
\end{equation*}
$$

Our saturation result is for a linear combination of S_{λ} introduced by Butzer [2]. As a special case, when k. the combination $S_{a}(f, 0,0)$ reduces to the operator $S_{\lambda}(f, t)$, and we have a saturation theorem for the Phillips operators. The linear combination is defined as follows.

Definition 2.3. The linear combination $S_{\mathrm{a}}(f, k, t)$ is defined by

$$
\begin{equation*}
S_{\lambda}(f, k, t)-\sum_{j=1}^{k} C(j, k) S_{-2}(t, t) \tag{2.6}
\end{equation*}
$$

where

$$
C(j, k) \prod_{i=}^{2} \frac{2}{2}_{2 i}^{2}
$$

Definition 2.4. Let $C_{\mathrm{N}}[0, \infty) \cdots\left\{f \in C[0, \infty): f(t) \quad M e^{N t}\right.$ for some M_{i} Define : c_{V} on $C_{V}[0, \infty)$ by

$$
f c_{N} \sup _{0} f(t) \text { © }^{N}
$$

It is easy to see that the operator $S_{d}(f, k, t)$ is indeed an approximation operator for functions in $C_{V}[0, \infty)$ for some $N \cdots 0$. It is also easy to sec that.
the rates of convergence to zero for $S_{\lambda}(f, k, t)-f(t)$ and for $S_{2 \lambda}(f, k, t) \cdots$ $S_{\lambda}(f, k, t)$ are the same. However, dealing with $\left\{S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)\right\}$ instead of $\left\{S_{\lambda}(f, k, t)-f(t)\right\}$ will simplify much of the proof of Lemma 2.8, which is one of the major steps for proving the saturation theorem.

Lemma 2.5. Let $f \in C_{V}[0, \infty)$ for some $N>0$. If $f^{(22+2)}(t)$ exists, then

$$
\begin{align*}
\lambda^{k+1}\left(S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)\right) & =\sum_{j, k+1}^{2 k+2} Q(j, k, t) f^{(j)}(t)+o(1) \\
& : P_{2 k+2}(D) f(t)+o(1) \tag{2.7}
\end{align*}
$$

where $\{Q(j, k, t)\}$ are polynomials in t. Moreover,

$$
Q(2 k+2, k, t)=C_{1} t^{k+1} \quad \text { and } \quad Q(2 k+1, k, t)=C_{2} t^{k}
$$

If $f \in C^{2 k+2}[a, b]$, then (2.7) is uniform in any interial interval $\left[a_{1}, b_{1}\right] C$ (a, b).

Proof. Clearly, $S_{\lambda}\left(e^{N x}, t\right)$ is uniformly bounded for t in any bounded interval. Hence, by the corollary to Lemma 2.2, we may assume that f has compact support.

As $S_{\lambda}(f, k, t)$ is a linear combination of $S_{\lambda}(f, t)$. so is $S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)$. If we denote

$$
S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)=\sum_{j=0}^{k ; 1} x(j, k) S_{2^{i_{n}}}(f, t)
$$

then the coefficients $\alpha(j, k)$ have the following property

$$
\begin{equation*}
\sum_{j=0}^{k+1} \alpha(j, k) 2^{-m j}=0, \quad \text { for } \quad m=0,1, \ldots k \tag{2.8}
\end{equation*}
$$

This follows from the well-known fact that

$$
\begin{aligned}
\sum_{j=0}^{k} C(j, k) 2^{-m j} & =1 & & m \\
& =0 & & m=1,2, \ldots, k
\end{aligned}
$$

Now by Taylor's formula we write

$$
f(u)=\sum_{j=0}^{2 k+2} \frac{f^{(i)}(t)}{i!}(u \cdots t)^{j}+\epsilon(u, t)(u \cdots t)^{2 k+2}
$$

Using Lemma 2.2 and relation (2.8), the lemma can be proved easily.
The following lemma is an induction step for proving the saturation theorem. This Lemma is similar to a lemma we proved in [5].

Lemma 2.6. Let $f \in C_{N}[0, \infty)$ for some $N>0$. If $\lambda^{k+1} S_{2 \lambda}(f, k, \cdot)$ $S_{\lambda}(f, k, \cdot) C_{C l a, b]} \leqslant M_{1}$, then $\lambda^{k}\left\|_{2 \lambda}(f, k \cdots \quad 1, \cdot)-S_{\lambda}(f, k-1, \cdot)\right\|_{C[a, b]} M_{2}$.

Proof. By Definition 2.3, it is easy to verify the following recursion relation

$$
\begin{equation*}
S_{\lambda}(f, k, t)=-\left(2^{k}-1\right)^{-1}\left[2^{2} S_{2 \lambda}(f, k-1, t)-S_{\lambda}(f, k-1, t)\right] . \tag{2.9}
\end{equation*}
$$

Let $\lambda-2^{n} \lambda_{0}, \lambda_{0} \in[N+1, N+2)$ and consider

$$
\begin{equation*}
I_{n}(t)=\left(2^{k}-1\right) \sum_{i=11}^{n-1} 2^{k i}\left[S_{2^{i}+1_{\lambda_{n}}}(t, k, t)-S_{2^{i} \lambda_{1}}(f, k, t)\right] \tag{2.10}
\end{equation*}
$$

By assumption of the lemma, we have
$\lambda_{0}^{k}:\left|I_{n}(t)\right|_{C[(\pi, k]} \leqslant\left(2^{k i}-1\right) \sum_{i=1}^{n i} 2^{k i}\left(2^{i} \lambda_{0}\right)^{-(l i+1)} M_{1} \lambda_{0}{ }^{k} \leqslant 2\left(2^{l i}-1\right) M_{1}$.
On the other hand, substitute (2.9) into (2.10), $I_{n}(t)$ can be rewritten as

$$
\begin{align*}
I_{n}(t)= & \sum_{i=1}^{n-1} 2^{k i}\left\{2^{k} S_{2^{i}+\lambda_{n}}(f, k-1, t)-S_{2^{i-1} \lambda_{0}}(f, k-1, t)\right\} \\
& \sum_{i=0}^{n-1} 2^{k i}\left\{2^{n} S_{2^{i+1} \lambda_{n}}(f, k-1, t)-S_{2^{\prime} \lambda_{n}}(f, k \cdots 1, t)\right\} \\
\cdots & 2^{k n}\left\{S_{2^{n+1}}(f, k-1, t)-S_{2^{n} \lambda_{0}}(f, k \cdots 1, t)\right\} \tag{2.12}\\
& 2^{k}\left\{S_{2 \lambda_{0}}(f, k-1, t)-S_{\lambda_{n}}(f, k-1, t)\right\}
\end{align*}
$$

Hence

$$
\begin{aligned}
& \left(2^{n} \lambda_{0}\right)^{k} \mid S_{2^{n+1} \lambda_{\lambda_{11}}}(f, k-1, \cdot)-S_{2^{n_{\lambda_{n}}}}(f, k-1, \cdot) C_{C[n, b]} \\
& \therefore \lambda_{0}:\left|I_{n}(t)\right|_{C[a, b]}+M^{\prime} \leqslant M_{2} .
\end{aligned}
$$

To prove our saturation result, we need two more lemmas.

Lemma 2.7. Let

$$
\begin{equation*}
B_{m}(\lambda, u)=\int_{0}^{\infty} W(\lambda, t, u) t^{m} d t \tag{2.13}
\end{equation*}
$$

Then (1) $B_{m}(\lambda, t)$ is a polynomial in u and $1 / \lambda$; (2) the degree of $B_{m}(\lambda, t)$ in u is m; (3) the coefficient of u^{m} in $B_{m}(\lambda, u)$ is 1 .

Proof. This lemma can be proved by using Lemma 2.2 and changing the variables. However, the following direct argument may be clearer.

First, we have

$$
\begin{aligned}
B_{m}(\lambda, u)= & 1 & & m-0 \\
& u+(2 / \lambda) & & m=1 \\
& u^{2}+(6 / \lambda) u+\left(6 / \lambda^{2}\right) & & m=2
\end{aligned}
$$

That is, the assertion holds for $m=0,1$, and 2. Proceeding to the induction proceudre, first, we integrate $B_{m}(\lambda, u)$ by parts twice to obtain

$$
\begin{aligned}
B_{m}(\lambda, u) & =\int_{0}^{\infty} W(\lambda, t, u) t^{m} d t \\
& =-\frac{1}{m+1} \int_{0}^{\infty}(D W(\lambda, t, u)) t^{m-1} d t \\
& =\frac{1}{(m \div 1)(m+2)} \int_{0}^{\infty}\left(D^{2} W(\lambda, t, u) t^{m=2} d t\right.
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{0}^{\infty} & {[\mathbb{P} W(\lambda, t, u)] t^{m} d t-\int_{0}^{t} W(\lambda, t, u) t^{m+1} d t } \\
& =\int_{0}^{\infty}\left[\left(\frac{D^{2}}{\lambda^{2}}+\frac{2}{\lambda} D\right) W(\lambda, t, u) t^{m=1} d t\right. \\
& =\frac{m(m+1)}{\lambda^{2}} B_{m-1}(\lambda, u)-\frac{2(m+1)}{\lambda} B_{m}(\lambda, u) .
\end{aligned}
$$

Since $\mathbb{P} W(\lambda, t, u) \quad W(\lambda, t, u) u$, the above relation implies that

$$
B_{m, 1}(\lambda, u)=u B_{m}(\lambda, u)+\frac{2(m+1)}{\lambda} B_{m}(\lambda, u)-\frac{m(m+1)}{\lambda^{2}} B_{m-1}(\lambda, u) .
$$

The lemma follows readily by induction.

Lemma 2.8. Let $0<a<b<\infty$. If $f \in C_{N}[0, \infty)$, and $g \in C_{0}{ }^{\infty}$, with supp $g \subset(a, b)$, then

$$
\begin{equation*}
\left.\lambda^{k \cdot 1}<\left[S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)\right], g(t)\right\rangle \leqslant K f c_{\lambda}, \tag{2.14}
\end{equation*}
$$

where K is a constant depending only on g and its derivatives.

Proof. The proof is standard. First we observe

$$
\begin{aligned}
S_{\lambda}(f, t), g(t)= & \int_{0}^{\infty} \int_{0}^{\infty}\{W(\lambda, t, u) f(u) g(t)\} d u d t \\
& \int_{\text {supp } g} \int_{0}^{\infty}\{\cdots\} d u d t \\
& \int_{\operatorname{supp} g} \int_{u}^{\prime \prime}\{\cdots\} d u d t+f_{c_{N}} \cdot o(\lambda(k+1)) \\
= & \int_{0}^{\infty} \int_{a}^{b}\left\{\cdots\left|d u d t+l_{1} f\right|_{C_{N}} \cdot o\left(\lambda^{-(t(1)}\right)\right.
\end{aligned}
$$

by the corollary to Lemma 2.2. Now, by Fubini's theorem, we change the order of integration, and then expand $g(t)$ by Taylor's formula to obtain

$$
\begin{aligned}
\left\langle S_{N}(f, t), g(t)=\right. & \sum_{\gamma=0}^{2 k+2} \frac{1}{\gamma^{\prime}} \int_{0}^{u} \int_{0}^{\infty} W(\lambda, t, u) f(u) g^{(\gamma)}(u)(t-u)^{*} d t d u \\
& +\int_{u}^{0} \int_{0}^{\infty} W(\lambda, t, u) f(u) \epsilon(t, u)(t-u)^{2 k+2} d t d u \\
& +o\left(\lambda^{-(k+-1)}\right) f c_{N} \\
= & I(\lambda)+J(\lambda)+o\left(\lambda^{-\left(z_{2}+1\right)}\right) f c_{N}
\end{aligned}
$$

Observing that $\quad \epsilon(t, u)=(2 /(2 k-2)!) g^{(2 k+2)}(\xi) \mid \leqslant(2(2 k+2))!g^{(2 k+2)} \times$. and $\left|f(u) \leqslant e^{N b}\right| f \mid c_{N}$, it follows that

$$
\begin{aligned}
& J(\lambda): M f^{\prime} c_{N} \int_{0}^{\infty} \int_{\|}^{t} W(\lambda, t, u)(t-u)^{2 h: 2} d u d t
\end{aligned}
$$

Further, $J_{1} \leqslant M_{1} \lambda^{-(l+1)}$ by Lemma 2.2, since t is bounded; and, again by the same lemma,

$$
\left.\begin{array}{rl}
J_{2} & \leqslant \int_{b+1}^{\infty} \int_{1}^{b} W(\lambda, t, u)(t-u)^{2 k} 2\left(\frac{t}{t}-u\right. \\
b
\end{array}\right)^{2 n} d u d t
$$

By choosing $m: k+3$, we find that $J_{2}: M_{2} \lambda^{-1 / \cdots 1)}$.

On the other hand,

$$
I(\lambda)=\int_{0}^{b} \int_{0}^{\infty} W(\lambda, t, u) \sum_{\gamma=1}^{2 \alpha+2} \Psi_{\gamma}(u) t^{\nu} d t d u
$$

where

$$
\Psi_{\gamma}(u)=\sum_{m=\gamma}^{2^{k+2}}(-1)^{m-1} \frac{1}{\gamma!(m-\gamma)!} f(u) g^{(m)}(u) u^{m-\gamma} .
$$

Now by Lemma 2.7 and relation (2.8), we have

$$
\sum_{j=0}^{k+1} x(j, k) I\left(2^{j} \lambda\right)=O\left(\lambda^{-(k: 1)}\right)
$$

Therefore, combining the above estimates, we have,

$$
\begin{aligned}
\lambda^{k+1} & <\left[S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)\right], g(t) \\
& =\mid \lambda^{k+1} \cdot \sum_{j=1}^{2 k+2} \alpha(j, k)\left\langle S_{2, \lambda}(f, t), g(t)\right| \\
& =O(1) \mid f C_{N} .
\end{aligned}
$$

Our main result in saturation is the following theorem.
Thiorev 2.8. Let $f \in C_{N}[0, \infty)$, and let $0<a<a_{1}<b_{1}<b<\infty$. Denote $I(f, \lambda, k, a, b)=\lambda^{k+1} \mid S_{\lambda}(f, k, t)-f(t) \|_{C[a, b]}$. Then the following implications (1) $\because(2) \Longrightarrow$ (3) and (4) $\because(5) \Longrightarrow$ (6) hold.
(1) If $f, \lambda, k, a, b)=O(1)$; (2) $f^{(2 k+1)} \in A . C .(a, b)$ and $f^{(22,+2)} \in L_{\infty}$ $[a, b] ;(3) I(f, \lambda, k, a, b)=O(1)$; (4) $I(f, \lambda, k, a, b)=o(1) ;(5) f \in C^{2 k+2}(a, b)$ and $\sum_{j=k=1}^{2 k+2} Q(j, k, t) f^{(j)}(t)=0$ in (a, b) where $Q(j, k, t)$ are polynomials in t : (6) $I\left(f, \lambda, k, a_{1}, b_{1}\right)=o(1)$.

Here, all $O(1)$ and $o(1)$ terms are with respect to λ when $\lambda \rightarrow+\infty$.
Proof. The method used here goes back to DeLeeuw and Lorentz (see, e.g., [6] or [7]).

Let $J(\lambda, f, k, t)=\lambda^{k} 1\left[S_{2 \lambda}(f, k, t)-S_{\lambda}(f, k, t)\right]$. Clearly, condition (1) implies

$$
\begin{equation*}
|J(\lambda, f, k, t)|_{c[n, \Delta]} \leqslant M . \tag{*}
\end{equation*}
$$

In the following we prove that $\left(1^{*}\right)$ implies (2) by induction on k.
This proposition is true for $k=0$ by assumption. Assume that it is true for $k-1$, then by Lemma 2.6 we have $f^{(2 k)} \in L_{x}[a . b]$ as an intermediate result.

Next, condition $\left(1^{*}\right)$ shows that $\{J(\lambda, f, k, t)\}_{\lambda}$ is bounded in $C[a, b] C$ $L_{\infty}[a, b]$. Since $L_{\infty}[a, b]$ is the dueal of $L_{1}[a, b],\{J(\lambda, f, k, t)$, is weak* compact. That is, there are $h \in L_{\infty}[a, b]$ and subnet $\left\{\lambda_{i}\right\}$ of $\left\{\lambda_{\text {, }}\right.$ such that $\left\{J\left(\lambda_{i}, f, k, t\right)\right\}$ converges to h in the weak* topology. In particular. for any $g \in C_{b}$, with supp $g \subset(a, b)$, we have

$$
\begin{equation*}
J\left(\lambda_{i}, f, k, t\right), g(t) \cdots \rightarrow h, g \tag{2.15}
\end{equation*}
$$

On the other hand, for any $\phi \in C^{2 /-2}[a, b]$. Lemma 2.5 implies

$$
\begin{aligned}
J\left(\lambda_{i}, \phi, k, t\right), g(t) & \cdots P_{2 k i 2}(D) \phi, g \\
& \phi, P_{2 k-2}^{*}(D) g .
\end{aligned}
$$

where $P_{2 k+2}^{*}(D)$ is the adjoint of $P_{2 k+2}(D)$ (in this case, it is simply a result of integration by parts).

Since $C^{2 k!2}[a, b] \cap C_{N}[0, \infty)$ is dense in $C_{N}[0, \infty)$, there exists $\left\{\phi_{a}\right\}$ in $C^{2,+2}[a, b] \cap C_{N}[0, \infty)$ converging to f in $\cdot c_{n}$-Norm. Now. using Lemma 2.8, we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty \rightarrow \infty} \lim _{\lambda_{i} \rightarrow \infty}\left\langle J\left(\lambda_{i}, \phi_{p}, k, t\right), g(t)=\lim _{\lambda_{i} \rightarrow-\infty} J\left(\lambda_{i}, f, k, t\right), g(t) .\right. \tag{2,17}
\end{equation*}
$$

Combining (2.15), (2.16), and (2.7), we get $h(t), g(t), f(t), P_{2 l+2}^{*}(D)$ $g(t)$ for all $g \in C_{0}{ }^{\alpha}$. This implies $P_{2 k+2}(D) f(t)=h(t)$ since they are equal as generalized functions. Recall that $f^{(2 k)} \in L_{\infty}[a, b]$, from the above differential equation we obtain $f^{(2 h+2)} \in L_{\alpha}[a, b]$.

This Proves (1) $\because=(2)$. The proof for the implication (4) $\because=$ (5) is similar and the other implications are calculational. We shall omit the rest of the proof.

3. A Direct Theorem

A direct theorem can be easily deduced from the properties proved in the last section. We estimate the degree of approximation of $S_{\lambda}(f, k, t)$ to $f(t)$ in terms of the general moduli of smoothness of f which is defined by

$$
\begin{equation*}
\omega_{k}(f ; h, a, b)==\sup \left\{\Delta_{t}{ }^{k} f(x) ; t \leqslant h, x+k t \in[a, b]\right\}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{h}^{k} f(x)=\cdots \sum_{\gamma=0}^{k}(-1)^{k-\gamma}\binom{k}{\gamma} f(x+\gamma h) \tag{3.2}
\end{equation*}
$$

Throrem 3.1. Let $f \in C_{N}[0, \infty)$ and $0<a<a_{1}<b_{1}<b<\div \infty$. Then there exists a constant M such that

$$
\begin{equation*}
S_{a}(f, k, t)-f(t)_{C\left[a_{1}, b_{1}\right]}<M\left(\omega_{2 k+2}\left(f ; \lambda^{-(1 ; 2)}, a, b\right)-\lambda^{-(t ; 1)} f \mid c_{c_{\mathrm{N}}}\right) . \tag{3.3}
\end{equation*}
$$

Proof. Consider a function $g \in C^{2 / 2}$ defined by

$$
\begin{align*}
g(x)= & \frac{1}{\binom{2 k-2}{k} \eta^{2 k-2}} \int_{n, 2}^{n_{2}^{2}} \cdots \int_{n=2}^{n \cdot 2}\left[(-1)^{k} \bar{d}_{n_{1}+\cdots+u_{2 k}, \ldots}^{2 k} f(x)\right. \\
& \left.+\left(\begin{array}{cc}
2 k & 2 \\
k \cdots & 1
\end{array}\right) f(x)\right] d u_{1} \cdots d u_{2 k: 2} . \tag{3.4}
\end{align*}
$$

where $(k \cdots 1) \eta<\min \left(a_{1}-a, b-b_{1}\right), \eta=\lambda^{-(1 / 2)}$, and

$$
\left.\bar{U}_{i n}^{2 n}=\sum_{j=0}^{2 n}(--1)^{\gamma}\binom{2 n}{\gamma} f\left(\begin{array}{lll}
x & \cdots & (n-j
\end{array}\right) h\right) .
$$

First observe that. from the definition of g, we have

$$
\begin{align*}
& f(x) \quad g(x) \leqslant \frac{1}{\binom{2 k+2}{k=1} \eta^{2 k+2}} \int_{-n 2}^{n \cdot 2} \cdots \int_{n=2}^{n} \bar{\Delta}_{u_{1}+\cdots u_{2 k-2}}^{2 k+2} d u_{1} \cdots d u_{2 k+2} \\
& \& M \omega_{2 k: 2}(f ; \eta(k+1), a, b) \leq(k+1) M \omega_{27+2}(f ; \eta, a, b) \\
& =: M_{1} \omega_{2 l i=:}\left(f ; \lambda^{-(1 / 2)}, a, b\right) \text {, } \tag{3.5}
\end{align*}
$$

for all $x \in\left[a_{1}, b_{1}\right]$.
On the other hand, we claim that

$$
\begin{equation*}
\left.g\right|_{C\left[\eta_{1}, b_{1}\right]} \leqslant M|f|_{C[m, b]} \leqslant M^{\prime}|f|_{C_{N}} . \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.g^{(2 k+2)}\right|_{C\left[f_{1}, b_{1}\right]} \leqslant M \lambda^{\left(k^{2}+1\right)} \omega_{2 k+2}\left(f ; \lambda^{-(1 / 2)}, a, b\right) . \tag{3.7}
\end{equation*}
$$

Inequality (3.6) is clear. In order to show (3.7), notice that

$$
\begin{align*}
& (-1)^{k}\left(\begin{array}{cc}
2 k & : \\
k & 1
\end{array}\right) \lambda^{-(k=1)} g(x) \\
& \int_{n=2}^{n-2} \cdots \int_{-\eta^{\prime} 2}^{n / 2}\left\{\bar{T}_{u_{1} \ldots \cdots u_{2 k}-2}^{2 k \cdot 2} f(x)+(-1)^{k}\binom{2 k+2}{k+1} f(x)_{1}^{l} d u_{1} \cdots d u_{2 k \cdots 2}\right. \\
& =\int_{-n 2}^{n \cdot 2} \cdots \int_{n 2}^{n / 2}\left[\sum_{i=0}^{2 k+2}(-1)^{i}\binom{2 k+2}{i} f_{i} x+(k+1-i) \sum_{i=1}^{2 k \cdot 2} u_{j}^{\prime}\right. \\
& \left.\cdots(-\mathrm{I})^{x}\binom{2 k+2}{k+1} f(x)\right] d u_{1} \cdots d u_{2}+2 . \tag{3.8}
\end{align*}
$$

Further, observe that

$$
\left.\begin{array}{l}
\frac{d^{2 k+2}}{d x^{2 k-2}} \int_{-n / 2}^{n_{2}^{2}} \cdots \int_{-n / 2}^{n_{1} 2}
\end{array} f\left(x-\sum_{i=1}^{2 k, 2} u_{i}\right) \cdot f\left(x-\sum_{i=1}^{2 k i 2} u_{i}\right)\right] d u_{1} \cdots d u_{22}=2
$$

and

$$
\begin{equation*}
\omega_{2 k+2}(f, k-1-i \eta) \leqslant \mid k+1 \cdots i ; \omega_{2 k+2}(f, \eta)=M_{i} \omega_{2 l-2}\left(f \cdot \lambda^{-11 / 2}\right) \tag{3.10}
\end{equation*}
$$

Using (3.8), (3.9), and (3.10)

$$
\begin{aligned}
& g^{(2 k: 2)} \left\lvert\, C\left[a_{1}, b_{1}\right]=\frac{\eta^{(2 k-2)}}{\binom{2 k+2}{k+1}}\right. \| \sum_{i=0}^{k}(\cdots 1)^{i}\binom{2 k+2}{i} \cdot 2 J_{(k-1-i) n}^{2 k+2} f(x) C_{\left.l_{1}, b_{1}\right]} \\
& \eta^{-(2 k: 2)} \frac{2}{\binom{2 k+2}{k-1}} \sum_{i=0}^{k}\binom{2 k-2}{i}(k+1 \cdots i) \\
& \omega_{2 k+2}(f ; \eta, a, b) \text {, }
\end{aligned}
$$

which proves (3.7).
Now we prove (3.3). By linearity of $S_{\lambda}(\cdot, k, t)$, we get

$$
\begin{aligned}
& S_{\lambda}(f, k, t)-f(t) \\
& \quad S_{\lambda}(f-g, k, t)-(g(t)-f(t))+\left(S_{\lambda}(g, k, t)-g(t)\right) \\
& \quad I_{1}(t)+I_{2}(t)-I_{3}(t) .
\end{aligned}
$$

It follows from (3.5) that

$$
\begin{equation*}
\left.I_{2}(f)\right|_{C \mid\left(r_{1}, h_{1}\right)} \leq M \omega_{2 k+2}(f ; \eta, a, b)=M \omega_{2 k+2}(f ; \lambda-(1,2), a, b) . \tag{3.12}
\end{equation*}
$$

The estimation for $I_{1}(t)$ follows from the corollary to Theorem 2.2: indeed, we have.

$$
I_{1}(t) \quad \sum_{j=0}^{k}|C(j, k)| \int_{0}^{\infty} W\left(2^{j} \lambda, t, u\right) \quad f(u)-g(u) d u .
$$

and

$$
\begin{aligned}
& \int_{0} W(\lambda, t, u)|f(u) \cdots g(t)| d u \\
& \prod_{n} \int_{n} \\
& f-g_{c \mid c, b)} K_{m, m} \lambda^{-m} \cdot
\end{aligned}
$$

where $\delta \cdots \min \left(a_{1} \cdots a, b \cdots b_{1}\right)$.

Hence, using (3.5),

$$
\begin{equation*}
\left|I_{\mathbf{1}}(t)\left\|_{C\left[a_{1}, b_{1}\right]} \leqslant M_{2} \omega_{2 k+2}\left(f ; \lambda^{-a / 2)}, a, b\right)+K_{m} \lambda^{-m}\right\| f\right|_{C_{N}} . \tag{3.13}
\end{equation*}
$$

It remains to estimate $I_{3}(t)$. By Taylor's formula, we write

$$
g(u)=\sum_{i=0}^{2 k+1} \frac{g^{(i)}(t)}{i!}(u-t)^{i}+\frac{1}{(2 k+2)!} g^{(2 k+2)}(\xi),
$$

where ξ between u and t. We separate the integral into two parts as in estimating $I_{1}(t)$, then use Lemma 2.2 and relation (2.8), we obtain

$$
\left\|S_{\lambda}(g, k, t)-g(t)\right\|_{c\left[a_{1}, b_{1}\right]} \leqslant M \lambda^{-(k+1)} \sum_{i=k+1}^{2 k+2}\left\|g^{(i)}\right\|_{c\left[a_{1}, b_{1}\right]}+K_{m, k} \lambda^{-m} \|_{c_{N}}
$$

Since $\left\|g^{(i)}\right\|_{C\left[a_{1}, b_{1}\right]} \leqslant M\left(\|g\|_{C\left[a_{1}, b_{1}\right]}+\left\|g^{(2 i+2)}\right\|_{C\left[a_{1}, b_{1}\right]}\right)$, and choosing $m \geqslant$ $k+1$, we have further that

$$
S_{\lambda}(g, k, t)-g(t) \|_{C\left[u_{1}, b_{1}\right]} \leqslant M^{\prime} \lambda^{-(k+1)}\left(\left.\left\|g^{(2 k \div 2)}\right\| c\right|_{q, b]}+\mid \cdot g c_{N}\right)
$$

Using (3.6), (3.7), and the defining relation (3.4) of g, the estimate of I_{3} is

$$
\begin{align*}
\left|I_{3}(t)\right|_{C\left[\mu_{2}, b_{1}\right]}= & \left|S_{\lambda}(g, k, t)-g(t)\right|_{C\left[\mu_{1}, b_{1}\right]} \leqslant M\left(\omega_{2 k+2}\left(f ; \lambda^{-(1 / 2)}, a, b\right)\right. \\
& \left.; \lambda-(k+1) \| f c_{N}\right) . \tag{3.14}
\end{align*}
$$

Combining (3.12), (3.13), and (3.14), we obtain (3.3).

4. The Inverse Theorems

Let $0<\alpha<2$, and let $\operatorname{Lip}^{*}(\alpha ; C[a, b])$ be the Zygmund class of functions

$$
\begin{equation*}
\operatorname{Lip}^{*}(\alpha ; C[0,1])=\left\{f \in C[0,1] ; \omega_{2}(f ; h, a, b) \leqslant M h^{\alpha}\right\} \tag{4.1}
\end{equation*}
$$

where $\omega_{2}(f ; h, a, b)$ is the second modulus of smoothness of f defined in (3.1).
Our inverse theorem is for $S_{\lambda}(f, 0, t)=S_{\lambda}(f, t)$. Analogous theorems for general k 's can be proved similarly.

Theorem 4.1. Let $0<a_{i}<a_{i+1}<b_{i+1}<b_{i}<+\infty, i=1,2,0<\alpha<2$, and suppose $f \in C_{N}[0, \infty)$. Then in the following statements, the implications (1) $>(2) \Leftrightarrow$ (3) \Rightarrow (4) hold.
(1) $: S_{\lambda}(f, t)-f(t) \|_{C\left[a_{1}, b_{1}\right]}=O\left(\lambda^{-n / 2}\right)$;
(2) $f \in \operatorname{Lip}^{*}\left(\alpha ; C\left[a_{2}, b_{2}\right]\right)$;
(3) $f \in \operatorname{Lip}\left(\alpha ; C\left[a_{2}, b_{2}\right]\right)$, if $0<\alpha \cdots 1, f \in \operatorname{Lip} *\left(1 ; C\left[a_{2}, b_{2}\right]\right)$, if $a=1$, $f^{\prime} \in C^{1}\left[a_{2}, b_{2}\right]$ and $f^{\prime} \in \operatorname{Lip}\left(\alpha-1 ; C\left[a_{2}, b_{2}\right]\right)$, if $1<\alpha \cdots 2$:
(4) $\left|S_{\lambda}(f, t)-f(t)\right|_{C\left[a_{3}, u_{3} \mid\right.} \not O\left(\lambda^{-v / 2}\right)$.

The equivalence of (2) and (3) is known (cf., [9, pp. 257, 333, and 337]). The implication of (3) to (4) follows from the direct theorem proven in the last section.

There are two major steps in proving that (1) implies (2).
(I) We first reduce the original problem to the following one, a special case when f has compact support inside some interior interval $\left[a^{\prime}, b^{\prime}\right]$ of $\left(a_{1}, b_{1}\right)$.

Theorem 4.1'. Let $0<a<b<x, 0<1<2$. If $f \in C_{0}$ with supp $f \subset(a, b)$, then the following statements are equivalent

> (1') $\left.\quad S_{\lambda}(f, t)-f(t)\right)_{(t a, b]} O\left(\lambda n^{*}\right)$,
> $\left(2^{\prime}\right) \quad f \in \operatorname{Lip}^{*}(\alpha ; C[a, b])$.

The proof of this reduced version will be given in the next step. In this step we show that Theorem 4.1' implies Theorem 4.1.

Let $a^{\prime}, a^{\prime \prime}, b^{\prime}$, and $b^{\prime \prime}$ be chosen so that $a_{1}<a^{\prime} \div a^{\prime \prime}<a_{2}$ and b_{2} $b^{\prime \prime}<b^{\prime}<b_{1}$. Also, let $g \in C_{0}{ }^{*}$ be such that supp $g \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$ and $g(x):-1$ on $\left[a_{2}, b_{2}\right]$. In order to prove the assertion, it suffices to show. assuming Theorem 4.1^{\prime} is true, that the condition $\left.\mid S_{\lambda}(f, t) \cdots f(t) c l_{1}, b_{1}\right] \cdots O\left(\lambda^{-x^{2}}\right)$ would imply $i S_{\lambda}(f g, t) \cdots f g(t) \mid C\left[a^{\prime}, i^{\prime}\right\} O\left(\lambda^{-2 / 2}\right)$. The proof of the last assertion is also divided into two steps.
(I.1) First assume $0<x \approx 1$. For $t \in\left[a^{\prime}, b^{\prime}\right]$, we have

$$
S_{\lambda}(f g, t)-f(t) g(t)
$$

$$
\begin{align*}
& \because g(t)\left[S_{\lambda}(f, t)-f(t)\right] \int_{u_{1}}^{u_{1}} W(\lambda, t, u) f(u)[g(u) \cdots g(t)] d u=o(1 / \lambda) \\
& \because I_{1}(t) \div I_{2}(t)+o(1 / \lambda), \tag{4.2}
\end{align*}
$$

where the $o(1 / \lambda)$ term is uniform for $t \in\left[a^{\prime}, b^{\prime}\right]$ by the corollary to Lemma 2.2.
The assumption ! $S_{\lambda}(f, t)-\left.f(t)\right|_{\mid C\left[a_{1}, b_{1}\right]}=O\left(\lambda^{-\alpha / 2}\right)$ yields the estimate

$$
\begin{equation*}
\left.I_{1}(t)\right|_{\left.c \mid u^{\prime}, u^{\prime}\right]} \leqslant\left. g\right|_{x} \cdot S_{\lambda}(f, t)-f(t) \mid c\left[u^{\prime}, b^{\prime}\right\} \leqslant M_{1} \lambda^{-2,2} . \tag{4.3}
\end{equation*}
$$

The estimate of $I_{2}(t)$ follows by the mean value theorem

$$
\begin{equation*}
I_{2}(t)=\int_{\sigma_{1}}^{b_{1}} W(\lambda, t, u) f(u)\left[g^{\prime}(\xi)(u-t)\right] d u \tag{4.4}
\end{equation*}
$$

Hence, by Lemma 2.2 and Cauchy-Schwarz inequality,

$$
\begin{equation*}
I_{2} \|_{C\left[n^{\prime}, b^{\prime} 1\right.} \cdots O\left(\lambda^{-1 / 2}\right) \leqslant O\left(\lambda^{-x / 2}\right) \tag{4.5}
\end{equation*}
$$

Combining the above estimates, we conclude

$$
S_{\lambda}(f g, t)-f g(t)_{C\left[\mu^{\prime}, u^{\prime}\right]}=O\left(\lambda^{-\alpha,{ }^{\prime}}\right)
$$

Therefore, Theorem 4.1 holds for at least $0<x \leqslant 1$.
(1.2) Now assume $1<x<2$. In this case we choose two more points x and y such that $a_{1}<x<a^{\prime}$ and $b^{\prime}<y<b_{1}$. Let $\delta \in(0,1)$. We shall prove the assertion for $1<\alpha<2-\delta$. Since δ is arbitrary, we may then conclude the assertion holds for all $x<2$.

First notice that, by the result of (I.1), the condition $\| S_{\lambda}(f, t)-\left.f(t)\right|_{\left[\mid a_{1}, b_{1}\right]}$ $\ldots O\left(\lambda^{-x / 2}\right)$ implies $f^{\prime} \in \operatorname{Lip}\left[1-\delta, C\left[x, l^{\prime}\right]\right)$. Now for $t \in\left[a^{\prime}, b^{\prime}\right]$, we form

$$
\begin{align*}
S_{\lambda}(f g, t) & -f(t) g(t) \\
= & g(t)\left[S_{\lambda}(f, t)-f(t)\right]+f(t)\left[S_{\lambda}(g, t)-g(t)\right] \tag{4.6}\\
& +\int_{x}^{\prime \prime} W(\lambda, t, u)[f(u)-f(t)][g(u)-g(t)] d u+o\left(\lambda^{-1}\right) \\
= & J_{1}(t)-J_{2}(t)+J_{3}(t)+o\left(\lambda^{-1}\right)
\end{align*}
$$

where the $o\left(\lambda^{-1}\right)$ term is uniform for $t \in\left[a^{\prime}, b^{\prime}\right]$ (corollary to Lemma 2.2).
The facts that $\left\|J_{1}\right\|_{c\left[a^{\prime}, b^{\prime}\right]}=O\left(\lambda^{-\alpha / 2}\right)$ follows from the assumption, and $J_{2} \mid c_{c\left[r^{\prime}, b^{\prime}\right]}=O\left(\lambda^{-1}\right) \leqslant O\left(\lambda^{-\alpha / 2}\right)$ by Lemma 2.4. Also, since $|f(u)-f(t)| \leqslant$ $M|u-t|^{1-\hat{\delta}}$ and $g(u)-g(t)=g^{\prime}(\xi)(u-t)$, using Jensen's inequality and Lemma 2.2, we obtain $\left\|J_{3}\right\|_{C\left[a^{\prime}, b^{\prime}\right]}=O\left(\lambda^{-(2-8) / 2}\right) \leqslant O\left(\lambda^{-\alpha / 2}\right)$.
(II) We prove Theorem 4.1^{\prime} in this step. Since supp $f \subset(a, b)$, we may choose $a^{\prime}, a^{\prime \prime}, b^{\prime}, b^{\prime \prime}$ in such a way that $a<a^{\prime}<a^{\prime \prime}<b^{\prime \prime}<b^{\prime}<b$, supp $f \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$. Let \mathscr{G} denote the class

$$
\begin{equation*}
\mathscr{G}=\left\{g \in C_{0}{ }^{2}, \operatorname{supp} g \subset\left[a^{\prime}, b^{\prime}\right]\right\} \tag{4.7}
\end{equation*}
$$

and define the Peetre K-function by

$$
\begin{equation*}
K(\xi, f)=\inf \left\{\|f-g\|+\xi\left\|g^{\prime \prime}\right\| ; g \in \mathscr{G}\right\} \tag{4.8}
\end{equation*}
$$

where $0<\xi \leqslant 1$.
In the following we shall only prove conditions (1') implies (2') in Theorem 4.1'.

Lemma 4.2. Condition (1') of Theorem 4.1 imp/ies

$$
\begin{equation*}
K(\xi, f) \leqslant M_{0}\left(\lambda^{-\alpha / 2}-\lambda \xi K\left(\lambda^{-1}, f\right)\right) \tag{4.9}
\end{equation*}
$$

Proof. Since supp $f \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$, there is an $h \in \mathscr{F}$, such that

$$
h^{(i)}(t)-\frac{d^{i}}{d t^{i}} S_{\lambda}(f, t)_{c[a, b]}=M^{\prime} \lambda^{-i} .
$$

$i=0$ and 2. Therefore

$$
\left.K(\xi, f) \leqslant 3 M^{\prime} \lambda^{-1} \quad f(t) \cdots S_{\lambda}(f, t)\right)_{c[a, b]}+\xi\left|S_{\lambda}^{\prime \prime}(f, t)\right|_{C[n, b]}
$$

Hence, it is sufficient to show that there exists an M, such that, for each $g \in \mathscr{G}$

$$
\begin{equation*}
\left\|S_{\lambda}^{\prime \prime}(f, t)\right\|_{C[a, b]} \leq M \lambda\left\{f-g:-\lambda^{-1} g^{\prime \prime} \|\right\} . \tag{4.10}
\end{equation*}
$$

But, by linearity of $\left(d^{2} / d t^{2}\right) S_{\lambda}(\cdot, l)$,

Moreover, differentiating the kernel $W(\lambda, t, u)$ directly gives

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t} W(\lambda, t, u)=e^{-\lambda(t+u)} \sum_{n=1}^{x} \frac{\lambda^{2} n u^{t-1} t^{n-2}}{n!(n-1)!}\left\{(n-\lambda)^{2}-n^{\prime}+\lambda^{2} e^{-\lambda t} \delta(u) .\right. \tag{4.12}
\end{equation*}
$$

Now, since

$$
\begin{aligned}
\int_{0}^{\alpha} \mid & \left.\frac{\partial^{2}}{\partial t^{2}} W(\lambda, t, u) \right\rvert\, d u \\
& \leqslant \int_{0}^{\infty} e^{-\lambda(t: u)} \sum_{n=1}^{\infty} \frac{\lambda^{2 n} u^{n-1} t \cdots 2}{n!(n-1)!}\left[(n-\lambda t)^{2}+n\right] d u \div \lambda^{2} e^{-\lambda t} \\
& =\frac{\lambda^{2}}{t^{2}} \int_{0}^{\infty} W(\lambda, t, u)(u-t)^{2} d u=\frac{2 \lambda}{t},
\end{aligned}
$$

we have

$$
\begin{equation*}
\left.S_{\lambda}^{\prime \prime}(f-g, t)\right|_{C[n, b]} \leqslant(2 \lambda / a) f-g=M_{1} \lambda f-g!. \tag{4.13}
\end{equation*}
$$

On the other hand, by Lemma 2.2, the degree of $S_{\lambda}\left(x^{m}, t\right)$ is m. it follows That $S_{\lambda}^{\prime \prime}(1, t)=S_{\lambda}^{\prime \prime}(x, t)==0$. Therefore.

$$
\begin{aligned}
S_{\lambda}^{\prime \prime}(g, t) & =\int_{0}^{\infty}\left[\frac{t^{2}}{\partial t^{2}} W(\lambda, t, u)\right] g(u) d u \\
& =\int_{0}[\cdots] g(t)+g^{\prime}(t)(u \cdots t) \cdots g^{\prime \prime}(\xi)(u-t)^{2} d u \\
& =\int_{0}^{\infty}[\cdots] g^{\prime \prime}(\xi)(u-\cdots t)^{2} d u
\end{aligned}
$$

and

$$
\begin{align*}
& \left.S_{a}^{\prime \prime}(g, t)\right|_{C[u, b]} \leqslant g^{\prime \prime},\left.\int_{0}^{\infty}\left|-\frac{c^{2}}{c t^{2}} W(\lambda, t, u)\right|(u-t)^{2} d u\right|_{C(u, u)} \\
& g^{\prime \prime} \cdot \int_{0}^{\infty} e^{-\lambda(n: n)} \sum_{n=1}^{\infty} \frac{\lambda^{2 n} u^{n-1} t^{n-2}}{n!(n-1)!} \\
& {\left[\begin{array}{lll}
(n-\lambda t)^{2} & n
\end{array}\right](u \quad t)^{2} d u \div(\lambda t)^{2} e^{-\lambda t} \|_{C[u, b,}} \tag{4.14}\\
& \therefore g^{\prime \prime} \cdot e^{-\lambda t} \sum_{n=0}^{r} \frac{(\lambda t)^{n-2}}{n!}\left[(n-\lambda t)^{2}-n\right]^{2}{ }_{C[u, b \mid} \\
& \left.g^{\prime \prime}!\cdot 6 \cdot \frac{4}{\lambda t}{ }_{C[\rho, 6]} \quad M_{2} \right\rvert\, g^{\prime \prime} .
\end{align*}
$$

Combining (4.13) and (4.14). we obtain (4.10). This completes the proof of the lemma.

Lemma 4.3. Relation (4.9) implies

$$
\begin{equation*}
K(\xi . f) \leqslant M \xi^{\alpha} 2 \quad \text { for some constant } M=0 . \tag{4.15}
\end{equation*}
$$

The proof of this lemma is standard and can be found in [1].
Therefore, to complete the proof of Theorem 4.1' (and hence the proof of Theorem 4.1) it is sufficient to prove the following lemma.

Lemma 4.4. Relation (4.15) implies

$$
\begin{equation*}
f \in \operatorname{Lip}^{*}(x ; C[a, b]) . \tag{4.16}
\end{equation*}
$$

Proof. Let $0<\delta: h$. Then for any $g \in \mathscr{G}$, we have

$$
\begin{gathered}
\Delta_{\delta}{ }^{2} f(t)= \\
A_{\delta}{ }^{2}(f(t)-g(t)) \quad \Delta_{\delta}{ }^{2} g(t) \\
4 f-g \quad \delta^{2} \mid g^{\prime \prime}
\end{gathered}
$$

Thus

$$
\begin{equation*}
\omega_{2}(f ; h, a, h)=4 K\left(h^{2}, f\right)<4 M h^{2} \tag{4.17}
\end{equation*}
$$

or $f \in \operatorname{Lip}^{*}(x ; C[a, b])$.

Acknowledgments

The author would like to express his sincere thanks to Professors Z. Ditzian and S. Riemenschneider for their excellent supervisions and constant assistances. He would like also to thank the referee for valuable suggestions.

References

1. H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials. Indiamu Unit. Math. J. 21 (1972), 693708.
2. P. L. Butzer, Linear combinations of Bernstein polynomials, (anad. J. Math. (1953). 559) 567.
3. Z. Ditanv. Exponential formulae for semigroup of operators in terms of the resolvent, Israel J. Math. 9 (1971), $541-553$.
4. Z. Ditzian avd C. P. May, Saturation classes for exponential formulae of semigroups of operators, in "Spline Functions and Approximation Theory." ISNM, Vol. 21, pp. 8399, Birkhäuser Verlag, Basel, 1973.
5. Z. DiťiaN and C. P. May, A saturation result for combinations of Bernstein polynomials, Tohoku Math. J. 28 (1976), 363-372.
6. G. G. Lorevt/, "Approximation of Functions," Holt, Rineharl \& Winston, 1966.
7. C. P. May. Saturation and inverse theorems for combinations of a class of exponential type operators, Canad. J. Math. 28 (1976), 1224-1250.
8. R. S. Phillirs, An inversion formula and semi-groups of linear operators, Anh. of Mah. 59 (1954), 325-356.
9. A. F. Timav, "Theory of Approximation of Functions of a Real Variable." p. 631, English translation, Pergamon, Long Island City, N.Y., 1963.

[^0]: * Postdoctorate fellow of National Research Council of Canada:

[^1]: ${ }^{1}$ Professor Ditzian was the author's thesis supervisor and Professor Riemenschneider was the author's direcf supervisor in the year when Professor Ditzian was on sabbatical.

