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1. INTRODUCTION

The Phillips operator is defined by

T s 24\ 7,001
S0 = [ ern (3 %—)J‘(u) du (0. (11)
As far as the degree of approximation is concerned, the behavior of this
operator 1s very similar to that of Bernstein polynomials, Szasz operators,
and Post-Widder operators, or, following [7], the so-called exponential-type
operators. However, the Phillips operator does not satisfy the differential
equation

(&/ee)y WA, t, 1) = (Ap(2)) WA, 1, ud(u — 1), (1.2)

where W(A, t, 1) is the kernel of S, (that is

Ciw - ()\Zr)n uw—l s
R P R "
and
Sy(fit) == (}V WA t, u) f(u) du). (1.4)
0

Since relation (1.2) is one of the basic properties of the exponential operators,
there are some technical difficulties in the analogous estimations for the
Phillips operators. In this note, we try to suggest some methods for handling
such problems by discussing the properties of the Phillips operators. This is
our main purpose.

In the study of the approximation properties of the Phillips operators, a
few results for some special cases are known. In the case when f'is replaced by
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TC) /in (1.1, where {7(t), t .- 0} is a C,-semigroup of operators. Phillips [8]
proved that S(7()) f, 1) converges to 7(7)/ uniformly on [0, L] for any
0 - L - - 2. Recently, Ditzian {3] estimated this rate of convergence in
terms of @ (A1 T() ), the modulus of continuity of 7(-)f on {0. L]
Later. Ditzian and May [4] characterized the saturation class for this
operator, again when fis of the form 7°() /. In the present note, we determine
the classes of functions satisfying “S,(/ k. t) = f(D)lcrani  O(A 2112,
forall O -~ = 2 where S,(/, k., 1) is a combination of the Phillips operators
S, /). and fis a function in C[0. o). In particular when & 0. we obtain
both saturation and inverse theorems for Phillips operators. The analogous
results for semigroups of operators can be deduced from it easily.

The saturation theorem (i.e.. v - 2) proved in Section 2 is essentially part
of the author’s Ph.D. thesis which was written under the supervision of
Professors Z. Ditzian and S. Riemenschneider.! In Section 3. a direct theorem
1s proved for the purpose of the completeness of the theory. In Section 4. we
prove an inverse theorem. which the author was not able to prove in his
thesis. For simplicity, we only prove the case when & 0 for the inverse
theorem. but there is no essential difficulties for the generalization.

2. THE SATURATION RESULT

We first prove some preliminary results.

Let WA 1. u). defined by (1.3), be the kernel of the Phillips operator. The
following lemma, describing the “varying property” of the kernel. is the
basic property of this operator.

Lemma 2.1, If

\2 2 |
P ,,1%,_) P D DR (2.1)
where D ¢jct, then
PWA L u)y - WA 1 u)u. (2.2)

Proof. Beginning with the expression

. s 4 PPAYTETEN |
eMS\(f. 1) - ’ e \ > (,/}L) LA S(u) | f (1) du.,

N ~onl(n 0w

! Professor Ditzian was the author’s thesis supervisor and Professor Riemenschneider
was the author’s direct supervisor in the year when Professor Ditzian was on sabbatical.
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we differentiate twice with respect to 7 on both sides to obtain
SN DRSSty = ) | W 1) uf () du
b1}

Dividing both sides by (A%/r) ' yields the required relation.

Remark. 1In order to calculate S,(x’, 1), it would be simpler to compute
Pi1 than to calculate directly from the operator. For example, Pl - 1,
P PR s 2 (200 1, PIOT 10 1 90(4%A) + 3240(18/A%) - 60480
(17A%) - 635040(r¢/A%) + 3810240(¢%/A%) —- 12700800(14/A%) —+ 21772800
(£3A7y - 16329600(12/A%) -{- 3628800(1/A%).

Lemma 2.2, Ler A,.(A, 1) be defined by

A0 — [ WO — 0 du. = 0. 1,2, (2.3)

il

Then the following statements are true.

(1Y A(A 1) is a polynomial in (M);
(2)  the degrees of A, (A, 1) in (At} is [m|2], while the degree of S\{(x", 1) in
1is exactly m.

Proof. First observe that, if /, g € C*, then

o . 2 o, ooy .

POrog) = (Bf) g 1 31/ (D g) — g/ (D) 53 DU - Dgl (24
This can be seen from the relation

, 2 Dy . 2 b
P (1 YD) g ) e DN g g (D g

2ipe 51D (D)D)
X. g )\2 g A2 h)"

Replacing (Df {(Dg) by D(f Dg) -~f(D?g), we obtain relation (2.4).

Now the lemma can be proved easily by induction.

The lemma is trivial for m -~ 0, I, and 2. Assume that the lemma is true
for integers less than or equal to m. Applying the operator ((21'A) D -
(1/A%) D?) -~ P — tto both sides of (2.3). we have

2

=t Loy Lope
DA 1) - 55 D2 (A1)

= PAm '.w WA, t, u)(u — 1™ du — 1A JJ WA, &, t)(u - 1) du

Y0 0
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A [ [PW(A, t. 1)) — £) du — A ' ) WA, 1) — ) zlt:

0 0

i
.

S 2tAm ‘ WAt u) Du — 1y du

C0

s

fAY 1 | WA, t.u) D*u — 1) du
0

s

o 2R ’ WAt u) D(u — 1y du

H

] .
X Ay A By —20mA,, (A1) — tm(m — 1) A_o(A 1)
2

L DAL,

Thus. the lemma is also true for m -~ 1.
COROLLARY. Let WA, 1. u). defined in (1.3). be the kernel of the Phillips

operators. Let also N and 8 be two positive numbers. and [a. b be any bounded
interval. Then for any m > 0, there exists a constant M, , such that

&)
(4]

| W(A, t. u) eM* dn ML AT (
DT A cla,nl
Our saturation resuit is for a linear combination of S, introduced by
Butzer [2]. As a special case, when & 0. the combination S, /.0. 1)
reduces to the operator S,(/, t). and we have a saturation theorem for the
Phillips operators. The linear combination is defined as follows.

DerTioN 2.3, The linear combination Sy( /. A, 1) is defined by
/l\
Sifikon)y =% CULA) S, 010, (2.6}
o

where

4 2,
C(J, k) [T Y ",.3,: .
2R -
DerNiTiON 2.4, Let Cy[0, o) -~ {f= C[0. o). f(f) = MeN' for some
M. Define ' - ¢, 0N Cy[0. ) by

fley sup  ftr) ¢ M.

0

s

It is easy to see that the operator S/, &, 1) is indeed an approximation
operator for functions in C'[0, 20) for some N - 0. It is also easv to sec that.
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the rates of convergence to zero for Sy(f, k, t) — f(t) and for Sy,\(7, k, t) --
Siy(f, k. 1) are the same. However, dealing with {Sy,(f, k, 1) — Si(/, k, 1)}
instead of {Sy(f, &k, ) — f(1)} will simplify much of the proof of Lemma 2.8,
which is one of the major steps for proving the saturation theorem.

LemmA 2.5, Let fe C\[0. o) for soime N > 0. If f2++2(¢t) exists, then

219
NASu(fo ko) = Sk ) = % QU ks 1) f91) - o(1)

Joheil

- Py (D) f(1) -+ o)), 2.7)

where {Q( J. k, 1)} are polynomials in t. Moreover,
002k -2, k, t) = Cyt*tt and Ok + 1, k, t) = Cyth.

If fe C¥'2a, b], then (2.7) is uniform in any interial interval [a,, b,] C
(a, b).

Proof. Clearly, Si(e™=, t) is uniformly bounded for ¢ in any bounded
interval. Hence, by the corollary to Lemma 2.2, we may assume that f has
compact support.

As S\(f, k, t)is a linear combination of S,(f, 1}.s01s Su,(f2 k. 1) = S,(f. k. 1).
If we denote

2R
Salfo ko ty — S\ k. 1) = Z A J, k) Soi, (1 1)
o
then the coefficients «f j, k) have the following property
k41

> ol jky 2 = 0, for m=0,1,..k. (2.8)

j=0

This follows from the well-known fact that

z]: C(j. k)27 == ] m =0,

" = 0 m=1,2,.... k.
Now by Taylor’s formula we write
‘-”f+2fu

fy =Y I)V(t) (u -ty -+ e(u, t)(u — 1)+,

i=0

Using Lemma 2.2 and relation (2.8), the lemma can be proved easily.
The following lemma is an induction step for proving the saturation
theorem. This Lemma is similar to a lemma we proved in [5].
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LEMMA 2.6, Ler fe Cy[0, ) for somme N > 0. If A¥V S/, k, ) -
SNk, )icto = My, then X i Sox(f k1, ) — Si(L k — L ictas = Ms.

Proof. By Definition 2.3, it is easy to verify the following recursion
relation

Silfok,t) = 28 = DT 258 (fo b — L) — Sk — 1L D). (29)

Let A = 2"A,, Ay e [N -+ 1, N - 2) and consider
L(t) = (28 — 1) nz_l M8, (s k,t) — Sz,-l\“(j; k, 1)] (2.10)
0
By assumption of the lemma, we have
A I L) Ieany = (28— 1) "ZI HNNTD M = 2028 — 1) M, . (2.11)

2=

On the other hand, substitute (2.9) into (2.10), 1,(¢) can be rewritten as

n-1
Lit) = Y 2828, (fk — 10y~ Sgan(fk — 1 D)
0 k
n-1
Z 2“{21{5? r‘/\(( /~ k- Ia ’) - S‘g')\ (], ko 1. t):
p) '
. _ ‘ (2.12)
o 2]“71,IS27!+1A”(_}(« /\' - Js [) - S._,‘n/‘“(jy ]\’ . ]\ [);
48k — 1, 0) — S, (fok - 1.1}
Hence
(ZHAO)I" ! S2n+1hu(/; k—1, ) — Sgn,\”('.f; k—1,-) Cla,nl
= ’\Uk i In([)‘;(?[u,b] - M’ : M‘.’ .
To prove our saturation result, we need two more lemmas.
LEMMA 2.7, Let
B\ uy = [ WO, )1 dr. (2.13)

Y0

Then (1) B,(A, t) is a polynomial in u and 1/)\; (2) the degree of B, (A, 1) in u
is m; (3) the coefficient of u™ in B, (A, u) is 1.
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Proof. This lemma can be proved by using Lemma 2.2 and changing the
variables. However, the following direct argument may be clearer.
First, we have

B, (A u) == 1 m — 0,
1+ (2/Q) m o=,
u? = (6/A) 1 - (6/A?) m o= 2

That is, the assertion holds for n == 0, I, and 2. Proceeding to the induction
proceudre, first, we integrate B, (A, u) by parts twice to obtain

P

B, (A, u) = l Wt u) t" dt

]
T e ‘/ (DWA, 1, u)y 11 dt
*0

l s

I . 2 w2
= TS .‘0 (DEW(A, ¢, u) 172 dr.

1t follows that
("W, calevdi— [ woun wentdi
d 0

- _[f [(% + % D) WA 1, 1 dr

1) JECERY
o T Bm ,I(A, M) — A - Bm(>\, ll).

Since PW(A, 1, u) = W(A, 1, u) u, the above relation implies that

Bm - 1(/\s u) - uB'm(A9 LI) ":' 2(”7)\—{*,)_ Bm(A- H) - EIQU/\T:’]‘)‘ Bm— 1(A> u)'

The lemma follows readily by induction.

LeEmMA 2.8, Let 0 <a <<b < oo. If fe Cy[0, ), and ge C,* with
supp g C (a, b), then

PSSOk 1) — Sy(fok D)og(ny = KU ey (2.14)

where K is a constant depending only on g and its derivatives.
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Proof. The proof is standard. First we observe

S G

S/ ), 8l1) - I J WA I u) f () @)} du de
“0 0

74

J ' et du dt

supp g o

Wb

Pobdudt S0 f oA L)

YSupp g v

== I ‘ Vobdudr 1 fle s o(ATED),

by the corollary to Lemma 2.2. Now, by Fubini’s theorem, we change the
order of integration, and then expand g(¢) by Taylor’s formula to obtain

2k+2 b a
Sifin.g) = ) ;u| | WO 1) f) gt -~ w) di du
=0 £t 0
sh e

. WA, t, u) f(u) e(t, u)(r — w)? > dt du

sy
Lo
= A LI LoD L
Observing that | e(f, u)' == (2/(2k - 2)1) g€ = (2/(2k |- 2))1 g0, |

and | f(u)! =2 eN'| fle . it follows that

JA) LM ey, (/' [ WA 1, )t = Y2 du dr

M ] ‘,[m‘l |~h , 'ﬁh} (e M e

Car
N
"(l <t '774‘]‘1!‘

Further, J, = M;A=%+Y by Lemma 2.2, since ¢ is bounded; and, again by the
same lemma,

N ZHr

a ab . t ‘ll
J‘l e ‘{;‘H .|,, W(A, f, ll)(f . ll) ! (’;*I;’ du di

. [/. o
e [0
" -(M (t - by

By choosing m " k -+ 3. we find that J, - My/A-00 0,
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On the other hand,

2k+2

I(A) - fb {'C WA t,u) Yy, Wu) 17 dri du.

where
2h4-2

- g 'Nf—*/¥*__ld___ ol 7Y
Yo(u) - )”Zv( B T 7/)!f(ll) gy

Now by Lemma 2.7 and relation (2.8), we have

ft1
S (). k) [(270) = O\ G0y,

j=0

Therefore, combining the above estimates, we have,

P S Lk 1)y - Sif kD)) g(r).

92

NS (o K)S, () g() |

\
i=1 !

Our main result in saturation is the following theorem.

THEOREM 2.8, Let fe Cy[0, o0), and let 0 < a < a; <b, <b < .
Denote I(f. Ak, a, by == Nt S\(f.k, t) — f(Dctas - Then the following
implications (1) - (2) = (3) and (4) -~ (5) = (6) hold.

(y i Ak, a, b) = O(l); (2) f@ ) e A.C. (a,b) and PP el
la, D) Y A N koa, b) = O (B I(f, A k, a, b) = o(1); (5) fe C¥+¥a, b)
and Zi],"l OC). Kk, t) f9(t) = 0 in (a, by where Q( j, k. t) are polynomials in t:
(6) I(f. A k. ay . b)) == o(l).
Here, all O(1) and o(1) terms are with respect to A when A — -- 0.

Proof. The method used here goes back to DelLeeuw and Lorentz (see,
e.g., [6] or [7]).

Let J(A flk,t) = XNSYSW(f, k, 1) — S)(f- k, 1)]. Clearly, condition (1)
implies

‘1 J(A*f: k* I)"([ﬂh} /~ M (1*)

In the following we prove that (1*) implies (2) by induction on 4.

This proposition is true for k£ =0 by assumption. Assume that it is true
for & — I, then by Lemma 2.6 we have f® e L_[a, b] as an intermediate
result.
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Next, condition (1*) shows that {JH{A, /. k, 1)}, is bounded in Cla. b} C
L.[a. b]. Since L.[a, b] is the dueal of L{a.b). {J(A, f A 1), is weak™
compact. That is, there are he L [a, b} and subnet {A;} of {A! such that
1A, L Sy k, 1)) converges to & in the weak™ topology. In particuluar. for any
¢ C,, with supp g C(a, b), we have

SN koD gy g (2.15)
On the other hand, for any ¢ € C#2[qg, b}, Lemma 2.5 implies

S, bk ). gty > Py AD) $l g

¢, Po AD) g .

where P (D) is the adjoint of Poy o(D) (in this case, it is simply a result ol
integration by parts).

Since C*2[a, b] N Cy[0, co) 1s dense in Cy[0, av). there exists {4, in
C***a, b] N Cx[0, x) converging to / in " - 'c-Norm. Now. using
Lemma 2.8, we have

i Tim (JQA,, ¢y kon).gl) = im JA L f ko g (247)
p T A A

Combining (2.15), (2.16), and (2.7). we get “A{t), g(r): -~ 7 f(1). P35 D)
2(1)> for all g € Cy*. This implies Py o(D) f(1) == h(r) since they are equal as
generalized functions. Recall that f** ¢ L, [a, 5], from the above differential
equation we obtain f2¥ e [ _la, b)].

This Proves (1) == (2). The proof for the implication (4) = (5) is similar
and the other implications are calculational. We shall omit the rest of the
proof.

3. A DIRECT THEOREM

A direct theorem can be easily deduced from the properties proved in the
last section. We estimate the degree of approximation of S,(/. k. 7) to f(¢) in
terms of the general moduli of smoothness of f'which is defined by

wil(fs hy a, b) == sup{idFf(x)i: 1) = h,x + kt € [a, b]}. (3.1)

where

,

A = Y (e {C ) Fx - yph). (3.2)

e
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TreorReEM 3.1, Let fe Cyf0, o) and O < a << a; < by < b << +o0. Then
there exists a constant M such that

FSA k) = (O et o Mol fL AT, b) o AT fie) (3.3)

Proof. Consider a function g € C*~* defined by

N l - a2 a2 B . A
h(v\) - 2/\ ] 2 ;/;‘,J"n,g J . [( l) Anl f(\)
()
(3.4)
2k
- ( o )f(\)] duy - duy, s .
where (K - 1)y << minlay — a, b - by), m == A~/ and
o 2n .
a3 =y (——l)’( )f(\ (n = J) ).
J sty
First observe that, from the definition of g, we have
: : ol v s ,,,,,FLW?,”i_ . v LA 2k42
f(\) ‘\(.\) ) ,2/\’ - 2) 2h32 wa 2 -( n./2 \‘ Al"l P il (lul (/“"—)7"“ 2
(/\' o K
Moy, o fiplk - Da,b) = (k- 1) Mwy.o{fi 7, a. b)
s Miwgy o 7 AT a, b)), (3.9
for all x € [a, . b].
On the other hand, we claim that
5 g “C[nl,bl] 41‘ ‘M {f‘ clonl = M’ ‘ f %(‘N . (36)
and
9 ey MAT D o £ N0, a b, (37)

Inequality (3.6) is clear. In order to show (3.7), notice that

2k

0 ]2) AU Dg(x)

- ."” : r j 1-: i u»_m-.:f(-\‘) 4 (1) (2]\ N

)/(\) duy -+ diy,

. [in'(——f]y (- 2).f‘§.\~ k) ),Z)u

(= 1)F (2: 7\ 12) f(.\")] duy - dug,.s . (3.8)
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Further, observe that

(f2Eer 2 ohrs ) 2
T ‘ o | ’ [/(x D) u,—) ‘/(.\‘— Y ul-,)jl duy - dity s
- <2 v—n/2 \ i1 / . i1

24257 (), (3.9)
and

ool fo Tk -= T~ m) s [k L - wgiolfim) o Moy ol f0 A7),

(3.10)
Using (3.8), (3.9), and (3.10)

(2K 2) L
HEPNC) S R e —1)¢ 2k =2 YN TRt
i 8 Clap bl (2/( T 2) r} 1;} ( ) ( i ) (er1—n J(X) Loy

k-1
2 Eo2k -2
(ki) S ‘ !

which proves (3.7).
Now we prove (3.3). By linearity of S)(-, &, 1), we get

SWfk ty — [fr)
SHf— g kot) —(glt) — f()) (S g k,t) —gt))
Il(f) ‘ ]2(’) T I:;(’)-

It follows from (3.5) that
() a1 o Mos o fs 1, a, b) = Mwy o fi A2V a, b). (3.12)

The estimation for £,(7) follows from the coroliary to Theorem 2.2: indeed,
we have,

IS o
Loy Y LCGRN | WA L) ) - gl du.

) iy

and

"/ WA t,u) ] f(u) - g(t) du

f g Clab) K,,,)\ o / e

where o -~ min(a, - a, b — by).
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Hence, using (3.5),
(Dl etay 0,1 = Maway o(f; X702, a,b) + KA fly . (3.13)

It remains to estimate /4(¢). By Taylor’s formula, we write

2k11

g = Y 0wy

- __“.]’__ {24+ 2)
4 e IR

where £ between u and 1. We separate the integral into two parts as in esti-
mating /,(¢), then use Lemma 2.2 and relation (2.8), we obtain

2k+2

1838, ko 1) = gOllctay.py) <= MATERD ST gt o by + KA g ey
i=L+1

Since || g9 llctay < MU lictayy) + 1 €% ctay o). and choosing m =

k -£ 1, we have further that
| S3(g ko 1) — gD ctugoyd < MIATTIV(| g2 ey, 41 - 1 g Ny
Using (3.6). (3.7), and the defining relation (3.4) of g, the estimate of I, is
1L et = 1508 Ky 1) = (1) ety <= M{wapo( /3 A0, a, b)
LA £, (3.19)

Combining (3.12), (3.13), and (3.14), we obtain (3.3).

4. THE INVERSE THEOREMS
Let 0 -2 « << 2, and let Lip*(«; Cla, b]) be the Zygmund class of functions
Lip*(«; C[0, 1)) == {fe C[0, 1]; wy(f I, a, b) < Mh}, (4.1

where wy(f; 4, a, b) is the second modulus of smoothness of fdefined in (3.1).
Our inverse theorem is for S,(#, 0, t) == Si(f, 1). Analogous theorems for
general k’s can be proved similarly.

THEOREM 4.1. Let0 < a; < a;.q <<bjyy <b; < 400, i=1,2,0 <a <2,
and suppose fe Cyl0, co). Then in the following statements, the implications
(1) > (2) = (3) = (4) hold.

(1) " Sifs 1) = FOlcta 01 = OO 2);
(2) feLip*(w; Clas , bol);
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(3) e Lip(a: Clas, b)), if 0 < x -~ 1. f¢ Lip*(L: Clay» bo]). if o — 1.
feCla,.byyand f e Lip(e ~ 1; Clag . b)), if 1 o« 2:

@) IS(AD = f(Octay0, O ),

The equivalence of (2) and (3) is known (cf., {9, pp. 257, 333, and 337)).
The implication of (3) to (4) follows from the direct theorem proven in the
last section.

There are two major steps in proving that (1) implies (2).

(I} We first reduce the original probiem to the following one, a special
case when f has compact support inside some interior interval [a’, b'] of
(ay, by).

THEOREM 4.1". Let 0 < a < b - 2,0 < v 20 f feC, with supp
fCla, b), then the following statements are equivalent

(1) 1S(fL 0 — f(‘r)?‘('lu,h] o O(A NP,
(2') feLip*a: Cla, b]).

The proof of this reduced version will be given in the next step. In this step
we show that Theorem 4.1 implies Theorem 4.1.

Let a',a”.b'. and b" be chosen so that ¢, <<« - a" << a, and b, -
b" < b < b, . Also, let g e Cy* be such that supp g C [@”. #"] and g(x) « -
on [a,, b,). In order to prove the assertion, it suffices to show. assuming
Theorem 4.1" is true, that the condition |'S,(f, 1) - f(r)‘i_m,l.bl] O(A)
would imply | Sy(fg, 1) -~ f2(Dlcrer ) - O@Q2). The proof of the last
assertion is also divided into two steps.

(1.1)  First assume 0 < « I. For t € [d’, b']. we have
Sy fg. ) — f(1) g(1)

by

= oS f. ) — f(D] [ WA tow) fan] gluy — g(H)) du - o(1/A)

= I(r)y = () - o(1/A), (4.2)

where the o(1/A) term is uniform for 7 € [a’, b'] by the corollary to Lemma 2.2.
The assumption |' S,(f, t} — f(t)iif»[,,l‘y,J = (A~} yields the estimate

WL clor o1 5% T8 e - USHL) — FDict w1 = M A2 (4.3)

The estimate of I,(r) follows by the mean value theorem

By

I(t) = I WA, t.ouw) )] ¢ (EXu - 1)] du. {4.4)

sy
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Hence, by Lemma 2.2 and Cauchy-Schwarz inequality.
Ly lierar ) 0 O <0 O(A2), (4.5)
Combining the above estimates, we conclude
L SA(fg ) — f8(1) crr ) == O(A3)
Therefore, Theorem 4.1 holds for at least 0 <7 ~ = 1.

(I1.2) Now assume 1 < « << 2. In this case we choose two more points
x and v such that ¢, << x <<a’ and & <<y << b, . Let 6 (0, 1). We shall
prove the assertion for 1 <C « <22 — 4. Since § is arbitrary, we may then
conclude the assertion holds for all « < 2.

First notice that, by the result of (I.1), the condition || S,(£, t) — f(¢)! cloy.v)]
< A2y implies f' € Lip[l - 8, Clx, y]). Now for te[a’, '], we form’

Si(fg, 1) — f(1) g(1)
= SIS, 1) = (O] + [0S\, 1) — g(1)]
+ [ WO 0l — Fgw) — g0 du 4 o(x)
= Jl(r)a«%— Jo(t) = (1) = o(A7Y),

(4.6)

where the o(A-Y) term is uniform for ¢ € [¢’, b'] (corollary to Lemma 2.2).

The facts that || J; lefer .7 = O(A™/?) follows from the assumption, and
[y leler a1 = OA™D) < O(A—/?) by Lemma 2.4. Also, since | f(u) — f(r)! <
Ml — 179 and g(u) — g(t) = g’(§) (u — t), using Jensen’s inequality and
Lemma 2.2, we obtain ! J, e[ »q == O(A~2-8)/2) <0 O(A~/2),

(II) We prove Theorem 4.1 in this step. Since supp /'C (a, b) we may
choose a', a”, b', b” in such a way that a <a' <a" < b" < b < b, supp
fCla", b"]. Let % denote the class

G ={geCxsuppgCla, b} 4.7
and define the Peetre K-function by
K& f)y=if{lif —gl +£llg" ! ge 9, (4.8)

where 0 < £ < 1
In the following we shall only prove conditions (1") implies (2') in
Theorem 4.1",

Lemma 4.2.  Condition (1') of Theorem 4.1 implies
K& [) << My(A=72 - AEK(A, f)). 4.9
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Proof. Since supp fC [a”, b"], there is an /i € &, such that

;g /l“)('[) - "’(Zl.‘ ‘S/\(./; T) i s /‘/{//\7 ‘.
dti “cla.bl
i == 0and 2. Therefore

KE fYy <I3M'A - f(r) - Sy Dictan -+ € 1S3 Dlicta -

Hence, it is sufficient to show that there exists an M, such that, for each
gEY
1S5S D lctan = MMLf- g - A g . (4.10)

But, by linearity of (d?/dt?) S,(-, 1),
i: SK(’: 1)116'1,,/_111 *S/\/(f - & [)f‘(.'[u.f»] Sl{( &, {)?i(,‘ln,n] . (4] ])

Moreover, differentiating the kernel W(A, 7. u) directly gives

&2 W(\ ) O i A2nyg=lgn- 2 ‘( \ ) ' \ " 8( ) (4 l’\)
= tou) = et e A (11— ALy e M o). (412
P EATIE RN 1 _ Pt i

ot ~ontn M

Now, since

r

6\2 o
iz WAL L) | du

. /\'lnufw 1y -2

e e o A e

t0 n=1
/\2 4 o 2)\
i fn WA, t, u)(u -~ 1) du -
we have
SN =g et 5 2Ma) - g = ML f— g (4.13)

On the other hand. by Lemma 2.2, the degree of S,(x™, 1) is m. it follows
That S3(1, 1) == Sy(x, 1) = 0. Therefore.

SHg 1) = Lr ['(%riz WA, t, ll)] g(u) du
( [ g(t) -+ & (tHu -ty -~ g"(EWu - 1V du
0

T i
0
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and
SHe Dicrar = 1L g" " | ' ’Tt‘ WA &, u) | (e — 1) du
v ‘C[(l nl
L \Zn 1o~ ltu
T S T s AU ) SR
e J(, ¢ ”Zl nl(n— 1)
[or — Ae)* -+ (1) du -~ (Ar)? e \ (4.14)
'([u bl
:7”}.; —\tZ ()\I‘ ,A,)zw ”]2;
TRl Cla,nl
i 4
AR LR My g,
o ‘ ’ A C[«/ 3} e

Combining (4.13) and (4.14). we obtain (4.10). This completes the proot of
the femma.

Lemva 4.3, Relation (4.9) implies

K(E.f) = Mé&2 for some constant M > 0. {4.15)

The proof of this lemma is standard and can be found in [1].
Therefore, to complete the proof of Theorem 4.1" (and hence the proof of
Theorem 4.1) it is sufficient to prove the following lemma

Lemma 4.4, Relation (4.15) implies

Je Lip*(«: Cla, b]).

(4.16)
Proof. Let 0 < 0 = h Then for any g € 4. we have
A3y = VAR f(1) — g(n), — | dsglr)
47 -g ot g
Thus
wy(fih a, by T 4K £ << AME, 4.17)

or f= Lip* («x; Cla, b}).
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