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I. INTRODUCTION

The Phillips operator is defined by

S!I(f; t) = J'z e-!Il1t u) (',I,', (~2t)n u
H

, )f(U) du -+- e-!I1(0). (1.1)
o 111 11 .(/1-- 1).

As far as the degree of approximation is concerned, the behavior of this
operator is very similar to that of Bernstein polynomials, Szasz operators,
and Post-Widder operators, or, following [7], the so-called exponential-type
operators. However, the Phillips operator does not satisfy the differential
equation

(?jat) W(A, t, u) = (,\/p(t» W(lI, t, u)(u - t),

where W(lI, t, u) is the kernel of S!I (that is

(
' (lI2t)" U"-1 )

W(,\ t /I) c= e ,\(1 Ii) I i 8(u)
, , Ii] /1! (/1 - I)!

and

S,ll: t)-~ r" W(,\, t, /I) f(u) du).
• 0

(1.2)

( 1.3)

(J .4)

Since relation (1.2) is one of the basic properties of the exponential operators,
there are some technical difficulties in the analogous estimations for the
Phillips operators. In this note, we try to suggest some methods for handling
such problems by discussing the properties of the Phillips operators. This is
our mam purpose.

In the study of the approximation properties of the Phillips operators, a
few results for some special cases are known. In the case whenfis replaced by
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T(') / in (1.1), where {1'(t), f 0] is a Co-semigroup of operators. Phillips [8]
proved that Sl1'eJf; t) converges to 1'(1)/ uniformly on [0, L] for any° L x. Recently, Ditzian [3] estimated this rate of convergence in
terms of (oL(A 11/2), n')f), the modulus of continuity of 1'(.)/ on [0, L].
Later. Ditzian and May [4] characterized the saturation class for this
operator. again whenl is of the form T(')/: In the present note, we determine
the classes of functions satisfying S.IU k, t) f(t)llcr"./,j O(A <[I I)."),

for all () 2. where S,\(./, k, t) is a combination of the Phillips operators
S,,(f, n, and/is a function in C[G.x). In particular when k n. we obtain
both saturation and inverse theorems for Phillips operators. The analogous
results for scmigroups of operators can be deduced from it easily.

The saturation theorem (i.e .. ' 2) proved in Section 2 is essentially part
of the author's Ph.D. thesis which was written under the supervision of
Professors Z. Ditzian and S. Riemenschneider. ' In Section 3, a direct theorem
is proved for the purpose of the completcness of the theory. In Section 4. we
prove an inverse theorem, which the author was not able to prove in his
thesis. For simplicity, we only provc the case when k 0 for the Inverse
theorem. but there is no essential difficulties for the generalization.

2. THE SATURATIO,> RESULl

We first prove some preliminary results.
Let W(A, I, u), defined by (1.3), be the kernel of the Phillips operator. The

following lemma, describing the "varying property" of the kernel. is the
basic property of this operator.

LEWvlA 2.1. II

where D (! (I, then

D'--lA
1 ( I ~ D~, D'l

1\ 1\-
(2.1 )

IP W(A. t, u) W(A, f, u) u. (2.2)

Prool Beginning with the expression

rI e ,\" r. ±l~"0"~'_l . O(u) Iflu) du,
'0 In 1 II! (II 1)1

1 Professor Ditzian was the author's thesis supervisor and Professor Riemenschneider
was the author's direcf supervisor in the year when Professor Ditzian was on sabbatical.
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we differentiate twice with respect to t on both sides to obtain

e"I(A D)2 S,lJ: t) c- (/V/t) j'Y eM W(A, t, u) ul(u) duo
'0
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Dividing both sides by (A2/t) eM yields the required relation.

Remark. In order to calculate SA(X' • t). it would be simpler to compute
[pJi] than to calculate directly from the operator. For example. [pJo I I,
iP'11 r. iP'21 t 2 -+- (2/,1) t, [pllol _rIo -I 90(('/,\) -+- 3240(18/,12) 60480
(t7!XJ) 635040(t6/1\.4) + 3810240(1"/,1") -;-- 12700800(14/,10) -+ 21772800
((1/,17) I6329600(t 2/A 8) -I 3628800(1jA!l).

LEMMA 2.2. Let A,,,(A, t) be defined by

A,,,lA, t) ~- N" rW(A, t, u)(u -- t)'" du,
0-'0

iii =-- O. 1,2, .... (2.3)

Then the fol/owing statements are true.

(I) A,,,(I\.. t) is a polynomial in (At);

(2) the degrees of A",(A. t) in (At) is [mI2], while the degree oIS,\(x''', t) in
r is exacrly m.

Proof First observe that. ifj; gEe', then

F'U' g)
IT1l' . 2 .kt) . (T ~ - tf . (D . v). .~ A. b ,{2I' (D2g ) -+- ;2 D[f' Dg]. (2.4)

This can be seen from the relation

F'(j' g) t(1 ~DT-<~»f·g t)/k ~(Df)g-;--1:!(D2ng

2' D I." 2 f I- Xl g-;v.1 Dog )'2 (D. )(Dg) \ .

Replacing (DjHDg) by D(jDg)-f(D2g ), we obtain relation (2.4).
Now the lemma can be proved easily by induction.
The lemma is trivial for m - 0, I. and 2. Assume that the lemma is true

for integers less than or equal to m. Applying the operator ((2/',1) D +
(t/,V) D2) [pl - t to both sides of (2.3). we have

-2,\t DAm (,\, t) -+ {2 D 2Am (A, t)

c== [plAm reo W(,\, t, u)(u - 1)111 du --- tN" J'''c W(A, t, u)(u - -, t)'" du
'0 0
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Au' )r [iPl WI'\' t, u)](u - f)'" du -- tAU' rW(A, I. uj(u - t)'U dt:
~f) "1)

2tAU' 1 r'~ W(A, t, U) D(u - I l'" du
"0

lA'" 1 r' W(A, I. U) D2(u - I )'U du
• 0

21AU' 2 r' W(,\. t, 11) D(u - f)'u du
• 0

I
,\ A1/, I(A, t) - 21I1lA u'_I(A, t) -- tm(fII- 1) A rn - 2(;\. t)

Thus. the lemma is also true for III -~ I.

COROLLARY. Let W(A. I, u), defined in (1.3), be Ihe kernel o/Ihe Phillips
operalors. Let also Nand 0 be two positive numbers, and [a, h] he any bounded
interml. Then/or any 111 0, Ihere exislS a COl/stant MI/, ' such Ihal

r
• 1/--1

W(A, t, u) eNI! du
clu,I,1

(2.5)

Our saturation result is for a linear combination of 5,1 introduced by
Butzer [2]. As a special case, when k 0. the combination S,tU: O. I l
reduces to the operator SAC/: I). and we have a saturation theorem for the
Phillips operators. The linear combination is defined as follows.

DLlJ"mON 2.3. The linear combination StU: k, I) is defined by

I C(j, k) 52) /. I).
I 0

where

(2.61

CU, k)

DEFJ:'-iITION 2.4. Let Cv[O, Xl) U(C C[O, Xl): /(1)

M:. Define . c" on CdO, Xl ) by
!vfeNt for some

C' :\' sup /(1) ('Vi

o .' j

It is easy to see that the operatur S',,(j: k. I) is indeed an approximation
operator for functions in C,,[O, Xl) for some N O. It is also easy to sec that.
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the rates of convergence to zero for Si\(f; k, t) - f(t) and for S2i\(f; k, t) ~ ­

Si\(f; k, t) are the same. However, dealing with {S21f, k, t) - Slf, k, t)}

instead of {Slf, k, t) - fCt)} will simplify much of the proof of Lemma 2.8,
which is one of the major steps for proving the saturation theorem.

LEMMA 2.5. Let fE Cv[O. (0) for some N > 0. I.ffl 21,!2J(t) exists, then

~1":-2

,:V d(S2i\U k, t) - S,ll; k, t)) == I QU, k, t) fUJ(t) -[ 0(1)
Jk, I

(2.7)

where {QU, k, t)} are polynomials in f. /'vforeover,

and Q(2k + 1, k, t) = C2f 1,.

JffE C2l.I 2[a, b], fhen (2.7) is uniform in any interial interval [ai' btl C
(a, b).

Proof: Clearly, Si\(eNJ
" t) is uniformly bounded for f in any bounded

interval. Hence, by the corollary to Lemma 2.2, we may assume that f has
compact support.

As Sif, k, t) is a linear combination of Slf, f), so is S2i\(f, k, t) - Sll; k. f).
Tf we denote

k 1

S2ll; k, t)- S,/I; k, t) Ix(j, k) S2il/«(. 1) .
.i 0

then the coefficients aU. k) have the following property

k+1

I 'xU. k) 2~mJ == 0.
.i"11

for 111 = 0, l, .... k. (2.8)

This follows from the well-known fact that

7,

I cu, k) 2-IIIJ

J" 0

111 = 0,

° m=cc-l,2, ... ,k.

Now by Taylor's formula we write

21.'+2 f<JJ(t)
feu) = I '-.,~ (li 1)) + E(lI, f)(lI t)2I.:I2.

j~O ./.

Using Lemma 2.2 and relation (2.8), the lemma can be proved easily.
The following lemma is an induction step for proving the saturation

theorem. This Lemma is similar to a lemma we proved in [5].
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LEMMA 2.6. Let fE eN[O, (0) for some N > O. If ,V' 1 S2'U, k, -)
S,U; k, -)I,C[a,b] M 1 , then 1\1' Ii S2'U; k I,') - S,U, k 1, '):ida,b] M2.

Proof By Definition 2.3, it is easy to verify the following recursion
relation

Let A 2u Ao , Ao E [N + 1, N -:- 2) and consider

f,,(t)
7/-1

(2 1e
-- I) I 2lei [S2' 1, (/, k, t) - S.,i\ (/; k, t)]

Il . .. 'u
ioc.O

(2.10)

By assumption of the lemma, we have

n-l

'\/' In(t) ICla.b] (21e - 1) I 21,i(2 i Ao)-Il,]) MJAl 2(21. - 1) M j • (2.1 J)
i,,,O

On the other hand, substitute (2.9) into (2.10), InU) can be rewritten as

~l-- 1

fnU) I 2lei{21'S2iC',,,(/~ k ..-. L t) - S2i' 1.\,,(/, k -- I, t)]
i (I

n - 1

l,t)--S.,.,U;k I,t):
" "

(2.12)

Hence

To prove our saturation result, we need two more lemmas.

LEMMA 2.7. Let

Bm(i\, u) O' r'"' W(\, t, u) t'" dt.
--' 0

(2.13)

Then (l) Bn/A, t) is a polynomial in u and I/A; (2) the degree of Bm(A, t) in 11

is m; (3) the coefficient ofumin B",(A, u) is ].
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Proof This lemma can be proved by using Lemma 2.2 and changing the
variables. However, the following direct argument may be clearer.

First. we have

BII/(It, II) 1

II + (2/A)

11 2 + (6;'A) IIi (6/A2
)

/II c_ 0.

/II I.

/II 2.

That is. the assertion holds for m 0, I, and 2. Proceeding to the induction
proceudre. first, we integrate B",(A, u) by parts twice to obtain

BII/(A, u) === rr W(A, t. II) t'" dt
'0

I ".-- -"---- I IDW(A, t, u)) t/l1·1 dt
m -T' I 00

I j' J- .....--------.--- (D2W(A.t,u)tlll 2dt.
(m 1)(177 2)'0 .

1t follows that

ref [iP> W(A, t, u)] til/ dt - r I W<A. t. u) t'" ;1 cit
°0 '0

'f:, D2 2
-~ J) [(--,vi',\ D) W(A, t, u) t'''1 cit

l77(m -I- 1) 2(m+ 1)
,,\2 ,- B"'-l("\' u) - --~-~. BIi,(A, u).

Since IP W(A, t, u) W(A. t. u) u, the above relation implies that

The lemma follows readily by induction.

LEMMA 2.8. Let °< a < b < 00. If fE CN[O, (0). and g E Co"" with
supp g C (a, b), then

K f'c,.. (2.14)

where K is a constant depending onll' on g alld its deril'ati/'es.
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Proof The proof is standard. First we observe

1'"" J''L IW(A, t, U) .1(U) g(fl: du dt
'0 0

J. 1'/: ... ;dudt
:-3UlJIJ (j • 0

• .1/I I: ... :du cit + . t
-SUPP!l "u

.. CD -.U

~c I I {... :du dt+f!c
N

• 0(,\-11. I)),
"0 .. U

by the corollary to Lemma 2.2. Now, by Fubini's theorem, we change the
order of integration, and then expand g(t) by Taylor's formula to obtain

<Sl/; I), g(tY
21.:+2 I .1i.CD _

I --I I I W(A, t, u).1 (u) gIY)(U)(t -. uj' dt du
vc=o y. 'U '0

.C {" W(;\, t, u) f(u) E(t, u)(t U)2k-, 2 dt du

_cc I(A) irA) I o(kll,' 1)) : I C
N

_

Observing that E(t, u) =c (2/(2k 2)!) gI2l.+2)(f)! (2/(2k -1- 2))1 g(2!.'2)i, '

and! f(u): eNb Iflc
N

' it follows that

I' f. 1'/.
M IfieN W(A, I, 1I)(1

"0 .(/

l'vl

Further, J1 M 1A-I!.+I) by Lemma 2.2, since t is bounded; and, again by the
same lemma,

1" rW(A, t, 1I)(f
.' hf-l • ((

I'
t1, '" I

AioA-(k+ll-------- dl.
" • Ii '1 (t- h):'.IU

By choosing 111 k -+- 3, wennd that i:'. Ai/A-II, II
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On the other hand,

b CD 2/';+2

[(A) r r W(A, t, lI) L 'Fy(lI) {" dt dll.
~n ~(l ~~(l

where

2k-t-2 _ _ 1
L (-!)"I·'-----f(u)g(n/I(U)lI'lI '.

11/." y!(m -- y)!

Now' by Lemma 2.7 and relation (2.8), we havc

k+l

LXU k) I(2 j A) O(A(I· I)).
j.-,O

TherefNe, combining the above estimates, we have,

I N·i 1<[S2if, k, t) Sit: k, 0], get)

IV 11 . 2f2 (xU k)<s~"lf, t), g(t)
)=1

0(1) !Flc",'

Our main result in saturation is the following theorem.

323

THEOREM 1.8. Let fE CN[O, 00), and let 0 < a < a1 < b1 < b ceo
Denote [(f A, k, a, b) N·H I Slf: k, t) - j(t)llc[a,b]' Then the following
implications (I) (2) (3) and (4» (5) -'0- (6) hold.

(I) [(I: A, k, a, b) 0(1); (2) flU t l) E A.C. (a, b) and f(27.~) E LCD

[a, b]; (3) ](f: ,\, k, a, b) = 0(1); (4) fer, A, k, a, b) ~c 0(1); (5)fE C2k+2(a, b)
and L..~7(k21 Q(j. k, t)f(j)(t) = 0 in (a, b) where Q(j, k, t) are polFnomials in t;
(6) [(f ,I, k. at, b t ) -= 0(1).

Here, a/I O( I) and 0(1) terms are with respect to Awhen A ->- +XI.

Proof The method used here goes back to DeLeeuw and Lorentz (see,
e.g., [6] or (7]).

Let J(,\,f k, t) == A7.1[S2,lf k, 0 -. Sll k, t)]. Clearly, condition (1)
implies

I' J(AJ, k, t)lerl/.l,] M. (I *)

Tn the following we prove that (1 *) implies (2) by induction on k.
This proposition is true for k = 0 by assumption. Assume that it is true

for k- I. thcn by Lemma 2.6 we have fl2k) E L,Ja. b] as an intermediate
result.
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Next, condition (1 *) shows that {J(AJ k, t»)A is bounded in qa, b) C
C[a, b]. Since Lxc[a, b] is the ducal of L1[a, h], {J(A,f k. I): i, weak'"
compact. That is, there are hE LT[a, b] and subnet {Ai) of:/\: such that
(J(A, ,f~ k, t)} converges to h in the weak* topology. In particular. for any
g E Cn , with supp g C (a, h), we have

12.15)

On the other hand, for any cP E: C2I.2[a, b], Lemma 2.5 implies

where Pik+2(D) is the adjoint of P2kdD) (in this case, it is simply a result of
integration by parts).

Since C21! 2[a, b] n CN[O, OJ) is dense in Cv[O, co), there exists: cP,.) in
C2I'f 2 [a, b] n CN[O, x) converging to / in 'eu-Norm. Now. uSll1g
Lemma 2.8, we have

(2.17)

Combining (2.15), (2.16), and (2.7), we geth(t), g(l) jU l. P;;' i 2(D)

g(tt for all g E Cn". This implies P 21c+2(D)f(l) h(t) since they are equal as
generalized functions. Recall that jC2kl E C [a, h), from the above differential
equation we obtain jC21.,2) E L",[a, b].

This Proves (I) (2). The proof for the implication (4) (5/ is similar
and the other implications are calculational. We shall omit the rest of the
proof.

3. A DIRECT THEOREM

A direct theorem can be easily deduced from the properties proved in the
last section. We estimate the degree of approximation of S.\(f k, t) to fU) in
terms of the general moduli of smoothness of/which is defined by

w/c(f; h, a, b) == SUP{iLl/l(x)i: t j h, x kt E [a, b)}, 13.1)

where

I k) .
,1,/,j(x) =..• I (--1)1"/ l f(x

·/.n Y
yh). 13.2)
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THEOREM 3.1. Let Ie CN[O, co) and 0 < a < a1 < hi < h < -coo. Then
there exists a constant M such that

Proof. Consider a function g E CU ." defined by

,I(x)

(3.4)

where (k . I) Yj < min(a1 a, h bIl, Yj AI]!"), and

211 '2n
3/" .... I (--I)Y ( ) fix (n - j) 11).

} _,_co I

First observe that. from the definition of g, we have

. fix) g(x) (~' ~;,;:;;L", J',,',
Mw 2 1. 2(/: Yj(k I), a, h) (k·~ I) A1W"7,·d.f: Yj, G, h)

(3.5)

for all x r= [a1 ' b1).

On the other hand, we claim that

M flc[o./d M'lf<v' (3.6)

and
(3.7)

Inequality (3.6) is clear. In order to show (3.7), notice that

.. " .) 11 /') (I - ... r ,- )3 21, . 2 f ( )
• Ii ~ • --7) I~ ~ III "..... It';!/.:.:!. X (

2k.J 2). I
I)" .k I I ./(x)\ dll] ... dll"l.

(3.8)
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Further, observe that

and

C. P. MAY

2k-~-2

I u,)
1-1 I

Ix

(3.9)

Using (3.8), (3.9), and (3.10)

,W2/,;2U; '"I) M,W2/.'.2(j. ,\ 1],2»).

(3.10)

which proves (3.7).
Now we prove (3.3). By linearity of SAC, k, t), we get

Slf. k, t) - fU)

SAU -- g, k, t) ( g(t) fit»~ (5,\( g, k, t)-g(t))

IlU) i Mt)· /J(t).

It follows from (3.5) that

The estimation for flU) follows from the corollary to Theorem 2.2: indeed,
we have.

j,: :f.

Il(t) I I cu, k)1 r W(2 j
;\. t, u) feu) g(u) duo

jell • II

and

r W(;\, t, u) ! f(u) g(t)1 du
• n

III I
r

• 1/ I
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Hence, using (3.5),

327

It remains to estimate lit). By Taylor's formula, we write

I 1"1" O)(C)
(2k + 2)! g -. T_ S ,

where ~ between u and t. We separate the integral into two parts as in esti­
mating h(t), then use Lemma 2.2 and relation (2.8), we obtain

27:+2

S~(g, k, t) -- g(t)llc[al.bl] M).,~(lc+l) I glil ':Ch.IJI] + K",).,-m II g lICN'

i==k+')

Since Ii g(i) Ilc[al.bl] ~ M(li g Ilc[al.bl] -+- Ii g(21.-i-2) Iidal.bl]), and choosing rn ;:?;
k -L 1, we have further that

Using (3.6), (3.7), and the defining relation (3.4) of g, the estimate of13 is

i Ia(t)!lcr"l,bl] = S~(g, k, t) - g(t)IC[UI.bl] :s;:: M(W21.12(f; ).,-(1/2), a, h)

- ,\-(7,+1) lirc). (3.14)

Combining (3.12), (3.13), and (3.14), we obtain (3.3).

4. THE INVERSE THEOREMS

Let 0 < ,,: < 2, and let Lip*(o:; C[a, b]) be the Zygmund class offunctions

Lip*(o:; CrO, 1])= {fE C[O, I]; wlf; h, a, b) :s;:: Mh rr
}, (4.1)

where wl/; h, a, b) is the second modulus of smoothness of/defined in (3.1).
Our inverse theorem is for Si/, 0, t) =c S/f, t). Analogous theorems for

general k's can be proved similarly.

THEOREM 4.1. LetO < a i < ai+1 < bi +1 < bi < --t-oo, i = 1,2,0 < 0: < 2,
and suppose / E CN[O, 00). Then in the jol1owing statements, the implications
(l) (2) -¢> (3) .c> (4) hold.

(l)' Si/, t) - f(t)llc[a1.b
l

] = O().,-c/2):

(2) IE Lip*(cx; C[a2 , b2 ]);
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(3) f E Lip(iX; C[a:! , h2]), i/O <:t I, f E Lip*( I; C[a2 ' h2]). if L\ 1.
f' E Cl[a2 ' b2] andf' E Lip(iX I; C[a2 • h2]), if 1 ex 2:

(4) Sill. 1)- f(t):!c[o:\.V) 0(A-\/2).

The equivalence of (2) and (3) is known (cf., [9, pp. 257, 333. and 337]).
The implication of (3) to (4) follows from the direct theorem proven in the
last section.

There are two major steps in proving that ( I) implies (2).

m We first reduce the original problem to the following one, a special
case when f has compact support inside some interior interval [a', b'] of
(al , hI)'

THEOREM 4.1'. Let 0 a h J., 0 \ 2. If f E C" with supp
fC (a, b), then the following statements are equivalel11

(1 ') S,/./; t)- f(f),clo.l>l 0(A'2).

(2') fE Lip*(c:t; C[a, b]).

The proof of this reduced version will be given in the next step. ln this step
we show that Theorem 4.1' implies Theorem 4.1.

Let a', a", h', and bl! be chosen so that a1 a a a2 and h2

bl! < b' b] . Also, let g E C,,' be such that supp g C [a", b"] and g(x) I
on [a2 , b2]. ln order to prove the assertion. it suffices to show. assuming
Theorem 4.1' is true, that the condition Sl./: t) f(t):C!U,.u,] 0(k\/2)

would imply 1 Slfg, t) ,/g(f)!cru'.l,'j 0(,\-"2). The proof of the last
assertion is also divided into two steps.

(1.1) First assume 0 < ,

S,Mg,t) f(t)g(t)

I. For t E [a', h'], we have

I"

- g(t)[S,ll: t)-- f(t)) , r W(/\. t. lI)f(lI)[g(lI) g(t)] dll o( I/A)
~. ('I

(4.2)

where the a( IIA) term is uniform for t E [a', h'] by the corollary to Lemma 2.2.
The assumption Sl/; t) - f(t)II([o,. I"l 0(A-~/2) yields the estimate

(4.3)

The estimate of 12(t) follows by the mean value theorem

.. 'll

12(t) =cc I W("\, t, 1I)f(u)[g'(~)(u- t)] du.
• lit

(4.4)
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Hence, by Lemma 2.2 and Cauchy-Schwarz inequality,

Combining the above estimates, we conclude

Therefore. Theorem 4.1 holds for at least 0 • I.
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(4.5)

(1.2) Now assume I < :< < 2. In this case we choose two more points
x and y such that a1 < x < a' and b' < Y hI' Let 0 E (0, I). We shall
prove the assertion for 1 < .:< 2 - O. Since 0 is arbitrary, we may then
conclude the assertion holds for all. < 2.

First notice that, by the result of (1.1), the condition il Sif, t) ~- j(t)J:Cl(ll''',l
0(,\-\/2) implies r E Lip[1 - O. C[x. y]). Now for t E [a', b'], we form

S,\(fg, t) ~ f(t) g(t)

= g(t)[Slf, t) - f(t)] + f(t)[S,\( g, t) - g(t)]

+ rW('\, t, u)[f(u) - f(t)][g(u) - g(t)] dl! -+ 0(,\-1)
~, x

= Jlt) ;- Jlt) -+ Jlt) ~- on-I),

(4.6)

where the 0(,\-1) term is uniform for t E [a'. h'] (corollary to Lemma 2.2).
The facts that I! J1 Ilcla',,,'] = 0(k~/2) follows from the assumption, and

I J2 Ic[o'.,,'] = 0(,\-1) ~ 0(,\-~/2) by Lemma 2.4. Also, since I feu) - f(t)! :e-;;
M i u - t !1-8 and g(u) - get) = g'(g)(u - t), using Jensen's inequality and
Lemma 2.2. we obtain J a !Ic[a',/,'j 0(,\-(2-8)/2) ~ 0(k-rr / 2).

(fl) We prove Theorem 4.1' in this step. Since supp fC (a, b). we may
choose a', a", h', h" in such a way that a < a' < a" < h" < b' < b. supp
fC [a". h"]. Let elf denote the class

C§ = {g E Co2, supp g C [a', b']}

and define the Peetre K-function by

K(t,f) = inf{!i( - g + t!1 g" ; g E '§;,

(4.7)

(4.8)

where 0 < g~ 1.
In the following we shall only prove conditions (I ') implies (2') in

Theorem 4.1'.

LEMMA 4.2. Condition (l ') of Theorem 4.1 implies

(4.9)
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Proof Since suppIe [a", b"], there is an Ii E 01, such that

oand 2. Therefore

Hence, it is sufficient to show that there exists anM, such that, for each
gE'§

'I S~(j; t)'lc[u./J] MA1

But, by linearity of (d 2/dt 2) S,,(', I),

g _;\ 1 g" (4.10)

(4.11 )

Moreover, differentiating the kernel W(),., t, u) directly gives

Now, since

rI ~22 W(A, t, u) 'I du
'0 ct

\2 /
'0 r W(A, t, u)(u - tr till
t" '0

we have

2,\
--

t

S~U-g,t)lcr",1,l (2A/a) f- g = MIA f--g'· (4.13)

On the other hand, by Lemma 2.2, the degree of SA(X III
, t) is m. it follows

That S~(I, t) = S~(x, 1) = O. Therefore.

S~( g, t) =~ r' [<~i W(A, t, lI)] g(lI) till
• 0 r;t

r [''']g(t) + g'(t)(lI f) g"(t)(lI tF dll
• 0r["']g"(~)(u t)2

t1l1
• 0
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. rf.I_,~; W(A, t, l/) I (ll -- tf dl/I
I

'0 (t 'e[",I,]
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(Atf (r ,\1 i

lier",I>I
(4,14)

, (At)1I2
e-,u I ---I- [(11

'liOn.

Atf 11]2
el",I,J

4. 6 :­
, At AI~ g"

Combining (4.13) and (4.14), we obtain (4,10), This completes the proof of
the lemma,

LU,l\lA 4.3, Relatiol1 (4,9) implies

K(~.f) for some conslant /vi 0, ILL! 5)

Thc proof of this lemma is standard and can be found in [1].
Therefore, to complete the proof of Theorem 4, I' (and hence the proof of

Theorem 4,1) it is sufficient to prove the following lemma,

LE\lMA 4.4. RelaTion (4,15) implies

Prool: Let 0

fE Lip*(,x; qa, b]),

h. Then for any g E 'r;, we have

(4,16)

Thus

: Ll o3(j(t)- g(t))- Ll B2g(l)

4 f g 82 g"!

(02(/; h, a, h) 4K(h2, j)

orfe Lip* (,x; qa, h]).
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